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Executive Summary
A methodology for practical secure privacy-preserving distributed machine (deep) learning is proposed via addressing the
core issues of scalable transferrable deep learning, differential privacy, and fully homomorphic encryption. Considering
that private data is distributed and the training data may contain directly or indirectly an information about private data,
an architecture and a methodology are suggested for

1. addressing the optimal model size determination issue and computationally fast training issue of scalable and fast
machine (deep) learning with an alternative approach based on variational learning;

2. addressing the privacy-accuracy tradeoff issue of differential privacy via optimizing the noise adding mechanism;

3. defining an information theoretic measure of privacy-leakage for the design and analysis of privacy-preserving
schemes; and

4. mitigating the impracticality issue of fully homomorphic encryption (arising from large computational overhead)
via very fast gate-by-gate bootstrapping and introducing a learning scheme that requires homomorphic computation
of only efficient-to-evaluate functions.
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1. Privacy-Preserving Semi-Supervised
Transfer and Multi-Task Approaches (T3.2)

A novel differentially private semi-supervised transfer and multi-task learning framework is developed that

1. is capable of handling high-dimensional data and heterogeneity of domains;

2. optimizes the differential private noise adding mechanism such that for a given level of privacy, the perturbation in
the data is as small as possible;

3. allows learning of the target domain model without requiring an access to source domain private training data;

4. ensures that a high level of privacy (i.e. sufficiently low value of privacy-loss bound) would not degrade the learning
performance;

5. allows employing deep models in source and target domains so that data features at different abstraction levels can
be used to transfer knowledge across domains;

6. follows the analytical approach [1–5] to the learning of deep models while addressing the issues related to optimal
choice of model structure.

The basic idea of the proposed approach is stated as in Fig. 1.1. The method is as follows:

• An optimal differentially private noise adding mechanism is used to perturb the source dataset for preserving its
privacy. The perturbed source data is used for the learning of classifier and for the computation of other parameters
required for transferring knowledge from source to target domain.

• The classifiers consist of Conditionally Deep Membership-Mapping Autoencoder (CDMMA) based compositions.
A multi-class classifier is presented that employs a parallel composition of CDMMAs to learn data representation
for each class. An analytical approach is presented for the learning of the CDMMA.

• Since differential privacy will remain immune to any post-processing of noise added data samples, the perturbed
source dataset is used to

– build a differentially private source domain classifier,

– compute a differentially private source domain latent subspace transformation-matrix.

knowledge transfer from source to target domain

labelled, perturbed
source data

privacy wall

source
classifier

“source2target”
model

partially labelled
target data

target
classifier

source domain
latent subspace

transformation-matrix

labelled
source data

Figure 1.1: The proposed approach to privacy-preserving semi-supervised transfer and multi-task learning.

4



• The target domain classifier is learned adaptively in a manner that higher-level data features are used during initial
iterations for updating the classifier parameters and as the number of iterations increases more and more lower-level
data features are intended to be included in the process of updating the classifier parameters.

• The knowledge from source to target domain is transferred via

1. building a “source2target” model that uses variational membership-mappings to define a transformation from
source domain data space to the target domain data space,

2. combining both source and target domain classifiers with source2target model for a transfer and multi-task
learning scenario.

• Since no flow of data/information occurs from target to source domain, no privacy-preserving mechanism is used
to protect the target data.

1.1 Mathematical Background

1.1.1 Notations
• Let n,N, p,M ∈ N.

• Let B(RN ) denote the Borel σ−algebra on RN , and let λN denote the Lebesgue measure on B(RN ).

• Let (X ,A, ρ) be a probability space with unknown probability measure ρ.

• Let us denote by S the set of finite samples of data points drawn i.i.d. from ρ, i.e.,

S := {(xi ∼ ρ)Ni=1 | N ∈ N}. (1.1)

• For a sequence x = (x1, · · · , xN ) ∈ S, let |x| denote the cardinality i.e. |x| = N .

• If x = (x1, · · · , xN ), a = (a1, · · · , aM ) ∈ S, then x ∧ a denotes the concatenation of the sequences x and a, i.e.,
x ∧ a = (x1, . . . , xN , a1, . . . , aM ).

• Let us denote by F(X ) the set of A-B(R) measurable functions f : X → R, i.e.,

F(X ) := {f : X → R | f is A-B(R) measurable}. (1.2)

• For convenience, the values of a function f ∈ F(X ) at points in the collection x = (x1, · · · , xN ) are represented
as f(x) = (f(x1), · · · , f(xN )).

• For a given x ∈ S and A ∈ B(R|x|), the cylinder set Tx(A) in F(X ) is defined as

Tx(A) := {f ∈ F(X ) | f(x) ∈ A}. (1.3)

• Let T be the family of cylinder sets defined as

T :=
{
Tx(A) | A ∈ B(R|x|), x ∈ S

}
. (1.4)

• Let σ(T ) be the σ-algebra generated by T .

• Given two B(RN ) − B(R) measurable mappings, g : RN → R and µ : RN → R, the weighted average of g(y)
over all y ∈ RN , with µ(y) as the weighting function, is computed as

⟨g⟩µ :=
1∫

RN µ(y) dλN (y)

∫
RN

g(y)µ(y) dλN (y). (1.5)
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1.1.2 A Review of Measure Theoretic Conceptualization of Membership-Mappings
1.1.2.1 Representation of Samples via Attribute Values

Consider a given observation x ∈ X , a data point x̃ ∈ X , and a mapping Ax,f (x̃) = (ζx ◦ f)(x̃) composed of two
mappings f : X → R and ζx : R → [0, 1]. f ∈ F(X ) can be interpreted as physical measurement (e.g., temperature),
and ζx(f(x̃)) as degree to which x̃ matches the attribute under consideration, e.g. “hot” where e.g. x is a representative
sample of “hot”. This concept is extended to sequences of data points in order to evaluate how much a sequence x̃ =
(x̃1, . . . , x̃N ) ∈ S matches to the attribute induced by observed sequence x = (x1, . . . , xN ) ∈ S w.r.t. the feature f via
defining

Ax,f (x̃) = (ζx ◦ f)(x̃) (1.6)
= ζx(f(x̃

1), . . . , f(x̃N )), (1.7)

where the membership functions ζx : R|x| → [0, 1], x ∈ S, satisfy the following properties:

Nowhere Vanishing: ζx(y) > 0 for all y ∈ R|x|, i.e.,

supp[ζx] = R|x|. (1.8)

Positive and Bounded Integrals: the functions ζx are absolutely continuous and Lebesgue integrable over the whole
domain such that for all x ∈ S we have

0 <

∫
R|x|

ζx dλ|x| <∞. (1.9)

Consistency of Induced Probability Measure: the membership function induced probability measures Pζx , defined on
any A ∈ B(R|x|), as

Pζx(A) :=
1∫

R|x| ζx dλ|x|

∫
A

ζx dλ|x| (1.10)

are consistent in the sense that for all x, a ∈ S:

Pζx∧a(A× R|a|) = Pζx(A). (1.11)

The collection of membership functions satisfying aforementioned assumptions is denoted by

Θ := {ζx : R|x| → [0, 1] | (1.8), (1.9), (1.11), x ∈ S}. (1.12)

1.1.2.2 Measure Space

It is shown in [4] that (F(X ), σ(T ),p) is a measure space and the probability measure p is defined as

p(Tx(A)) := Pζx(A) (1.13)

where ζx ∈ Θ, x ∈ S, A ∈ B(R|x|), and Tx(A) ∈ T . It follows from [4] that for a given B(R|x|) − B(R) measurable
mapping g : R|x| → R, expectation of (g ◦ f)(x) over f ∈ F(X ) w.r.t. probability measure p is given as

Ep[(g ◦ ·)(x)] = ⟨g⟩ζx . (1.14)

The significance of equality (1.14) is to allow calculating averages over all real valued functions belonging to F(X ) via
simply computing a weighted average.

1.1.2.3 Student-t Membership-Mapping

Definition 1 (Student-t Membership-Mapping) A Student-t membership-mapping, F ∈ F(X ), is a mapping with input
space X = Rn and a membership function ζx ∈ Θ that is Student-t like:

ζx(y) =
(
1 + 1/(ν − 2) (y −my)

T
K−1

xx (y −my)
)− ν+|x|

2

(1.15)

where x ∈ S , y ∈ R|x|, ν ∈ R+ \ [0, 2] is the degrees of freedom, my ∈ R|x| is the mean vector, and Kxx ∈ R|x|×|x| is
the covariance matrix with its (i, j)−th element given as

(Kxx)i,j = kr(xi, xj) (1.16)

where kr : Rn × Rn → R is a positive definite kernel function defined as

kr(xi, xj) = σ2 exp

(
−0.5

n∑
k=1

wk

∣∣∣xi
k − xj

k

∣∣∣2) (1.17)

where xi
k is the k−th element of xi, σ2 is the variance parameter, and wk ≥ 0 (for k ∈ {1, · · · , n}).

It is shown in [4] that membership function as defined in (1.15) satisfies the consistency condition (1.11).
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1.1.2.4 Interpolation

For a zero-mean Student-t membership-mapping F ∈ F(Rn), let x = {xi ∈ Rn | i ∈ {1, · · · , N}} be a given set
of input points and the corresponding mapping outputs are represented by the vector f := (F(x1), · · · ,F(xN )). Let
a = {am | am ∈ Rn, m ∈ {1, · · · ,M}} be the set of auxiliary inducing points and the mapping outputs corresponding
to auxiliary inducing inputs are represented by the vector u := (F(a1), · · · ,F(aM )). It follows from [4] that f , based
upon the interpolation on elements of u, could be represented by means of a membership function, µf;u : RN → [0, 1],
defined as

µf;u(f̃) :=

(
1 +

1

ν +M − 2
(̃f − m̄f)

T

(
ν + (u)T (Kaa)

−1u− 2

ν +M − 2
K̄xx

)−1

(̃f − m̄f)

)− ν+M+N
2

(1.18)

m̄f = Kxa(Kaa)
−1u (1.19)

K̄xx = Kxx −Kxa(Kaa)
−1KT

xa, (1.20)

where Kaa ∈ RM×M and Kxa ∈ RN×M are matrices with their (i, j)−th elements given as

(Kaa)i,j = kr(ai, aj) (1.21)

(Kxa)i,j = kr(xi, aj) (1.22)

where kr : Rn × Rn → R is a positive definite kernel function defined as in (1.17).
Here, the pair (RN , µf;u) constitutes a fuzzy set and µf;u(̃f) is interpreted as the degree to which f̃ matches an attribute

induced by f for a given u.

1.2 Variational Conditionally Deep Membership-Mapping Autoencoders
Bregman divergence based conditionally deep autoencoders were introduced in [5]. Here, a special case of Bregman
divergence corresponding to the squared Euclidean norm is considered for the conditionally deep autoencoders.

1.2.1 Conditionally Deep Membership-Mapping Autoencoders
Definition 2 (Membership-Mapping Autoencoder [5]) A membership-mapping autoencoder, G : Rp → Rp, maps an
input vector y ∈ Rp to G(y) ∈ Rp such that

G(y) := [F1(Py) · · · Fp(Py) ]
T
, (1.23)

where Fj (j ∈ {1, 2, · · · , p}) is a Student-t membership-mapping (Definition 1), P ∈ Rn×p(n ≤ p) is a matrix such that
the product Py is a lower-dimensional encoding for y. That is, membership-mapping autoencoder first projects the input
vector onto a lower dimensional subspace and then constructs the output vector through Student-t membership-mappings.

Definition 3 (Conditionally Deep Membership-Mapping Autoencoder (CDMMA) [5]) A conditionally deep membership-
mapping autoencoder, D : Rp → Rp, maps a vector y ∈ Rp to D(y) ∈ Rp through a nested composition of finite number
of membership-mapping autoencoders such that

yl = (Gl ◦ · · · ◦ G2 ◦ G1)(y), ∀l ∈ {1, 2, · · · , L} (1.24)

l∗ = arg min
l ∈ {1,2,··· ,L}

∥y − yl∥2 (1.25)

D(y) = yl
∗
, (1.26)

where Gl(·) is a membership-mapping autoencoder (Definition 2); yl is the output of l−th layer representing input vector
y at certain abstraction level such that y1 is least abstract representation and yL is most abstract representation of the
input vector; and the autoencoder output D(y) is equal to the output of the layer re-constructing the given input vector as
good as possible where re-construction error is measured in-terms of squared Euclidean distance. The structure of deep
autoencoder (as displayed in Fig. 1.2) is such that

yl = Gl(yl−1),

=
[
F l

1(P
lyl−1) · · · F l

p(P
lyl−1)

]T
where y0 = y, P l ∈ Rnl×p is a matrix with nl ∈ {1, · · · , p} such that n1 ≥ n2 ≥ · · · ≥ nL, and F l

j(·) is a Student-t
membership-mapping.
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G2(·)
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GL(·)

yL

output
layery2

y1

y
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∗

D(·)y yl
∗

Figure 1.2: The structure of an L−layered conditionally deep autoencoder consisting of a nested compositions of
membership-mapping autoencoders.

1.2.2 Variational Learning of Membership-Mappings
1.2.2.1 A Modeling Scenario

Given a dataset {(xi, yi) | xi ∈ Rn, yi ∈ Rp, i ∈ {1, · · · , N}}, it is assumed that there exist zero-mean Student-t
membership-mappings F1, · · · ,Fp ∈ F(Rn) such that

yi ≈
[
F1(x

i) · · · Fp(x
i)
]T

. (1.27)

1.2.2.2 Disturbances and Auxiliary Inducing Points

For j ∈ {1, 2, · · · , p}, define

yj =
[
y1j · · · yNj

]T ∈ RN (1.28)

fj =
[
Fj(x

1) · · · Fj(x
N )
]T ∈ RN (1.29)

where yij denotes the j−th element of yi. The vectors yj and fj will be subsequently referred to as data and output of
membership-mappings, respectively. The difference between data and membership-mappings’ outputs will be referred to
as disturbance and denoted by vj , i.e.,

vj = yj − fj . (1.30)

A set of auxiliary inducing points, a = {am ∈ Rn | m ∈ {1, · · · ,M}}, is introduced. The membership-mappings’
output values at auxiliary inducing input points are collected in a vector defined as

uj =
[
Fj(a

1) · · · Fj(a
M )
]T ∈ RM . (1.31)

1.2.2.3 Membership Functional Representation Approach

Definition 4 (Membership Functional Representation of Variables) A variable y ∈ Y is represented by means of a
membership function µy : Y → [0, 1], where the pair (Y, µy) constitutes a fuzzy set and µy(ỹ) is interpreted as the
degree to which a point ỹ ∈ Y matches an attribute induced by y ∈ Y.

Definition 5 (Disturbance-Model) Disturbance vector vj is represented by means of a zero-mean Gaussian membership
function as

µvj (ṽj) = exp
(
−0.5β∥ṽj∥2

)
(1.32)

where β > 0 is the precision.

Definition 6 (Representation of Data yj for Given Mappings Output fj) Since yj = fj+vj , it follows from (1.32) that
yj , for given fj , is represented by means of a membership function, µyj ;fj : RN → [0, 1], as

µyj ;fj (ỹj) = exp
(
−0.5β∥ỹj − fj∥2

)
. (1.33)

8



Definition 7 (Representation of Mappings Output fj Based on Interpolation) fj , based upon an interpolation on the
auxiliary-outputs uj , is represented by means of a membership function, µfj ;uj

: RN → [0, 1], as

µfj ;uj (̃fj) =

(
1 +

1

ν +M − 2
(̃fj − m̄fj )

T

(
ν + (uj)

T (Kaa)
−1uj − 2

ν +M − 2
K̄xx

)−1

(̃fj − m̄fj )

)− ν+M+N
2

(1.34)

m̄fj = Kxa(Kaa)
−1uj (1.35)

K̄xx = Kxx −Kxa(Kaa)
−1KT

xa. (1.36)

Definition 8 (Representation of Data yj for Fixed Auxiliary-Outputs uj) yj , for given uj , is represented by means of
a membership function, µyj ;uj

: RN → [0, 1], as

µyj ;uj
(ỹj) ∝ exp

(〈
log(µyj ;fj (ỹj))

〉
µfj ;uj

)
(1.37)

where µyj ;fj is given by (1.33), µfj ;uj
is defined as in (1.34), and < · >· is the averaging operation as defined in (1.5).

Thus, µyj ;uj
is obtained from log(µyj ;fj ) after averaging out the variables fj using its membership function. It is shown

in Appendix 4.1 that

µyj ;uj (ỹj) ∝ exp
(
−0.5β∥ỹj∥2 + (uj)

T K̂−1
uj

m̂uj (ỹj)− 0.5(uj)
T K̂−1

uj
uj + 0.5(uj)

T (Kaa)
−1uj + {/(ỹj ,uj)}

)
(1.38)

where K̂uj
, m̂uj

(ỹj) are given by (4.89), (4.90) respectively, and {/(ỹj ,uj)} represents all those terms which are inde-
pendent of both ỹj and uj . The constant of proportionality in (1.38) is chosen to exclude (ỹj ,uj)−independent terms in
the expression for µyj ;uj , i.e.,

µyj ;uj
(ỹj) = exp

(
−0.5β∥ỹj∥2 + (uj)

T K̂−1
uj

m̂uj
(ỹj)− 0.5(uj)

T K̂−1
uj

uj + 0.5(uj)
T (Kaa)

−1uj

)
. (1.39)

Definition 9 (Data-Model) yj is represented by means of a membership function, µyj : RN → [0, 1], as

µyj (ỹj) ∝ exp

(〈
log(µyj ;uj (ỹj))

〉
µuj

)
(1.40)

where µyj ;uj
is given by (1.39) and µuj

: RM → [0, 1] is a membership function representing uj . Thus, µyj
is obtained

from log(µyj ;uj
) after averaging out the auxiliary-outputs uj using membership function µuj

.

1.2.2.4 Variational Optimization of Data-Model

The data model (1.40) involves the membership function µuj
. To determine µuj

for a given yj , log(µyj
(yj)) is maximized

w.r.t. µuj
around an initial guess. The zero-mean Gaussian membership function with covariance as equal to Kaa is

taken as the initial guess. It follows from (1.40) that maximization of log(µyj
(yj)) is equivalent to the maximization of〈

log(µyj ;uj (yj))
〉
µuj

.

Result 1 The solution of following maximization problem:

µ∗
uj

= arg max
µuj

[〈
log(µyj ;uj (yj))

〉
µuj

−
〈
log(

µuj
(uj)

exp (−0.5(uj)T (Kaa)−1uj)
)

〉
µuj

]
(1.41)

under the fixed integral constraint: ∫
RM

µuj
dλM = Cuj

> 0 (1.42)

where the value of Cuj is so chosen such that the maximum possible values of µ∗
uj

remain as equal to unity, is given as

µ∗
uj
(uj) = exp

(
−0.5

(
uj − m̂uj

(yj)
)T

K̂−1
uj

(
uj − m̂uj

(yj)
))

(1.43)

where K̂uj
and m̂uj

are given by (4.89) and (4.90) respectively. The solution of the optimization problem results in

µyj
(ỹj) ∝ exp

(
−0.5β

{
∥ỹj∥2 − 2

(
m̂uj

(yj)
)T

(Kaa)
−1(Kxa)

T ỹj +
(
m̂uj

(yj)
)T

(Kaa)
−1KT

xaKxa(Kaa)
−1m̂uj

(yj)

+
(
m̂uj

(yj)
)T Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
(Kaa)

−1m̂uj
(yj)

}
+ {/(yj , ỹj)}

)
(1.44)

where {/(yj , ỹj)} represents all (yj , ỹj)−independent terms.

Proof: The proof is provided in Appendix 4.2.
The constant of proportionality in (1.44) is chosen to exclude (yj , ỹj)−independent terms resulting in

µyj (ỹj) = exp
(
−0.5β

{
∥ỹj∥2 − 2

(
m̂uj (yj)

)T
(Kaa)

−1(Kxa)
T ỹj +

(
m̂uj (yj)

)T
(Kaa)

−1KT
xaKxa(Kaa)

−1m̂uj (yj)

+
(
m̂uj

(yj)
)T Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
(Kaa)

−1m̂uj (yj)

})
. (1.45)
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1.2.2.5 Membership-Mapping Output

Definition 10 (Averaged Estimation of Membership-Mapping Output) Fj(x
i) (which is the i−th element of vector

fj (1.29)) can be estimated as

F̂j(xi) :=
〈
⟨(fj)i⟩µfj ;uj

〉
µ∗
uj

(1.46)

where (fj)i denotes the i−th element of fj , µfj ;uj is defined as in (1.34), and µ∗
uj

is the optimal membership function
(1.43) representing uj . That is, Fj(x

i), being a function of uj , is averaged over uj for an estimation. Let G(x) ∈ R1×M

be a vector-valued function defined as

G(x) :=
[
kr(x, a1) · · · kr(x, aM )

]
(1.47)

where kr : Rn × Rn → R is defined as in (1.17). It is shown in Appendix 4.3 that

F̂j(xi) =
(
G(xi)

)(
KT

xaKxa +
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
Kaa +

Kaa

β

)−1

(Kxa)
Tyj . (1.48)

Let α = [α1 · · · αp ] ∈ RM×p be a matrix with its j−th column defined as

αj :=

(
KT

xaKxa +
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
Kaa +

Kaa

β

)−1

(Kxa)
Tyj (1.49)

so that F̂j(xi) could be expressed as

F̂j(xi) =
(
G(xi)

)
αj . (1.50)

1.2.2.6 Choice of Parameters

The analytically derived data model (1.45) involves several parameters which are suggested to be chosen as follows:

Auxiliary inducing points: The auxiliary inducing points are suggested to be chosen as the cluster centroids:

a = {am}Mm=1 = cluster_centroid({xi}Ni=1,M) (1.51)

where cluster_centroid({xi}Ni=1,M) represents the k-means clustering on {xi}Ni=1.

Degrees of freedom: The degrees of freedom associated to the Student-t membership-mapping ν ∈ R+\[0, 2] is chosen
as

ν = 2.1 (1.52)

Parameters (w1, · · · , wn): The parameters (w1, · · · , wn) for kernel function (1.17) are chosen such that wk (for k ∈
{1, 2, · · · , n}) is given as

wk =

(
max

1≤i≤N

(
xi
k

)
− min

1≤i≤N

(
xi
k

))−2

(1.53)

where xi
k is the k−th element of vector xi ∈ Rn.

Parameters M and σ2: Define a scalar-valued function:

τ(M,σ2) :=
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
(1.54)

where a is given by (1.51), ν is given by (1.52), and parameters (w1, · · · , wn) (which are required to evaluate the kernel
function for computing matrices Kxx, Kaa, and Kxa) are given by (1.53). It follows from the kernel function defini-
tion (1.17) that

τ(M,σ2) = σ2τ(M, 1). (1.55)

It is further observed from (1.48) that a higher value of τ corresponds to a larger level of data smoothing. Therefore,
we consider a criterion for choosing M and σ2 such that the data smoothing level (i.e. the value of τ ) should match
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the variance in the data. In particularly, we pose the requirement that τ should be at least as large as the data variance
(averaged over dimensions), i.e.,

τ(M,σ2) ≥ 1

p

p∑
j=1

var
(
y1j , · · · , yNj

)
. (1.56)

Using (1.55), the inequality (1.56) can be rewritten as

σ2 ≥ 1

τ(M, 1)

1

p

p∑
j=1

var
(
y1j , · · · , yNj

)
. (1.57)

The number of auxiliary inducing points M and the parameter σ2 for kernel function (1.17) are so determined that the
inequality (1.57) holds. This can be done via

1. choosing sufficiently low value of M ensuring that τ(M, 1) remains larger than a small positive value,

2. choosing σ2 to satisfy the inequality (1.57).

Precision of the disturbance model: The disturbance precision value β is iteratively estimated as the inverse of the
mean squared error between data and membership-mappings outputs. That is,

1

β
=

1

pN

p∑
j=1

N∑
i=1

∣∣∣yij − F̂j(xi)
∣∣∣2 (1.58)

where F̂j(xi) is the estimated membership-mapping output given as in (1.50).

1.2.2.7 Learning Algorithm and Prediction

Algorithm 1 is suggested for the variational learning of membership-mappings. The functionality of Algorithm 1 is as
follows.

1. The loop between step 4 and step 7 ensures, via gradually decreasing the number of auxiliary points by a factor of
0.9, that τ(M, 1) is positive with value larger than κ.

2. The positive value of τ(M, 1) allows steps 9 to 13 to ensure that the inequality (1.57) remains satisfied and thus the
level of data smoothing by membership-mappings remains related to the data variance.

3. The loop between step 16 and step 19 iteratively estimates the parameters α and β.

Definition 11 (Membership-Mappings Prediction) Given the parameters set M = {α, a,M, σ, w} returned by Algo-
rithm 1, the learned membership-mappings could be used to predict output corresponding to any arbitrary input data
point x ∈ Rn as

ŷ(x;M) =
[
F̂1(x) · · · F̂p(x)

]T
(1.59)

where F̂j(x), defined as in (1.50), is the estimated output of j−th membership-mapping. It follows from (1.50) that

ŷ(x;M) = αT (G(x))T (1.60)

where G(·) ∈ R1×M is a vector-valued function (1.47).

1.2.3 Algorithm for Variational Learning of Conditionally Deep Membership-Mapping Au-
toencoders

Since CDMMA consists of layers of membership-mappings, Algorithm 1 could be directly applied for the variational
learning of individual layers. Given a set of N samples {y1, · · · , yN}, following [5], Algorithm 2 is stated for the
variational learning of CDMMA.

Algorithm 2 defines {n1, · · · , nL} to be a monotonically decreasing sequence at step 2. This results in CDMMA to
discover layers of increasingly abstract data representation with lowest-level data features being modeled by first layer
and the highest-level by end layer. Fig. 1.3 illustrates through an example that Algorithm 2 allows high-dimensional data
representation learning at varying abstraction levels across CDMMA’s different layers.
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Algorithm 1 Variational learning of the membership-mappings

Require: Dataset
{
(xi, yi) | xi ∈ Rn, yi ∈ Rp, i ∈ {1, · · · , N}

}
and maximum possible number of auxiliary points

Mmax ∈ Z+ with Mmax ≤ N .
1: Choose ν and w = (w1, · · · , wn) as in (1.52) and (1.53) respectively.
2: Choose a small positive value κ = 10−1.
3: Set iteration count it = 0 and M |0 = Mmax.
4: while τ(M |it, 1) < κ do
5: M |it+1 = ⌈0.9M |it⌉
6: it← it+ 1
7: end while
8: Set M = M |it.
9: if τ(M, 1) ≥ 1

p

∑p
j=1 var

(
y1j , · · · , yNj

)
then

10: σ2 = 1
11: else
12: σ2 = 1

τ(M,1)
1
p

∑p
j=1 var

(
y1j , · · · , yNj

)
13: end if
14: Compute a = {am}Mm=1 using (1.51), Kxx using (1.16), Kaa using (1.21), and Kxa using (1.22).
15: Set β = 1.
16: repeat
17: Compute α using (1.49).
18: Update the value of β using (1.58).
19: until (β nearly converges)
20: Compute α using (1.49).
21: return the parameters set M = {α, a,M, σ, w}.

Algorithm 2 Variational learning of CDMMA

Require: Data set Y =
{
yi ∈ Rp | i ∈ {1, · · · , N}

}
; the subspace dimension n ∈ {1, 2, · · · , p}; maximum number of

auxiliary points Mmax ∈ Z+ with Mmax ≤ N ; the number of layers L ∈ Z+.
1: for l = 1 to L do
2: Set subspace dimension associated to l−th layer as nl = max(n− l + 1, 1).
3: Define P l ∈ Rnl×p such that i−th row of P l is equal to transpose of eigenvector corresponding to i−th largest

eigenvalue of sample covariance matrix of data set Y.
4: Define a latent variable xl,i ∈ Rnl , for i ∈ {1, · · · , N}, as

xl,i :=

{
P lyi if l = 1,

P lŷl−1(xl−1,i;Ml−1) if l > 1
(1.61)

where ŷl−1 is the estimated output of the (l − 1)−th layer computed using (1.60) for the parameters set Ml−1 =
{αl−1, al−1,M l−1, σl−1, wl−1}.

5: Define M l
max as

M l
max :=

{
Mmax if l = 1,

M l−1 if l > 1
(1.62)

6: Compute parameters set Ml = {αl, al,M l, σl, wl}, characterizing the membership-mappings associated to l−th
layer, using Algorithm 1 on data set

{
(xl,i, yi) | i ∈ {1, · · · , N}

}
with maximum possible number of auxiliary

points M l
max.

7: end for
8: return the parameters setM = {{M1, · · · ,ML}, {P 1, · · · , PL}}.
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Figure 1.3: A CDMMA was built using Algorithm 2 (taking n = 20; Mmax = 500; L = 20) on a dataset consisting of
1000 randomly chosen samples of digit 9 from MNIST digits dataset. Corresponding to the input sample (shown at the
extreme left of the figure), the estimated outputs of different layers of CDMMA are displayed.

Definition 12 (CDMMA Filtering) Given a CDMMA with its parameters being represented by a set,

M = {{M1, · · · ,ML}, {P 1, · · · , PL}},

the autoencoder can be applied for filtering a given input vector y ∈ Rp as follows:

xl(y;M) =

{
P ly, l = 1

P lŷl−1(xl−1;Ml−1) l ≥ 2
(1.63)

Here, ŷl−1 is the output of the (l − 1)−th layer estimated using (1.60). Finally, CDMMA’s output, D(y;M), is given as

D̂(y;M) = ŷl
∗
(xl∗ ;Ml∗) (1.64)

l∗ = arg min
l ∈ {1,··· ,L}

∥y − ŷl(xl;Ml)∥2. (1.65)

1.2.4 Wide Conditionally Deep Membership-Mapping Autoencoder
For big datasets, a wide form of conditionally deep autoencoder has been suggested [5] where the total data is partitioned
into subsets and corresponding to each data-subset a separate CDMMA is learned. The final output is equal to the output of
the CDMMA re-constructing the given input vector as good as possible where re-construction error is measured in-terms
of squared Euclidean distance.

Definition 13 (A Wide CDMMA) A wide CDMMA,WD : Rp → Rp, maps a vector y ∈ Rp toWD(y) ∈ Rp through
a parallel composition of S (S ∈ Z+) number of CDMMAs such that

WD(y) = Ds∗(y) (1.66)

s∗ = arg min
s∈{1,2,··· ,S}

∥y −Ds(y)∥2, (1.67)

where Ds(y) is the output of s−th CDMMA.

To formally define an algorithm for the variational learning of wide CDMMA, the ratio of maximum number of
auxiliary points to the number of data points is defined:

rmax =
Mmax

N
. (1.68)

Following [5], Algorithm 3 is suggested for the variational learning of wide CDMMA.

Algorithm 3 Variational learning of wide CDMMA

Require: Data set Y =
{
yi ∈ Rp | i ∈ {1, · · · , N}

}
; the subspace dimension n ∈ {1, 2, · · · , p}; ratio rmax ∈ (0, 1];

the number of layers L ∈ Z+.
1: Apply k-means clustering to partition Y into S subsets, {Y1, · · · ,YS}, where S = ⌈N/1000⌉.
2: for s = 1 to S do
3: Build a CDMMA,Ms, by applying Algorithm 2 on Ys taking n as the subspace dimension; maximum number of

auxiliary points as equal to rmax ×#Ys (where #Ys is the number of data points in Ys); and L as the number
of layers.

4: end for
5: return the parameters set P = {Ms}Ss=1.

Definition 14 (Wide CDMMA Filtering) Given a wide CDMMA with its parameters being represented by a set P =
{Ms}Ss=1, the autoencoder can be applied for filtering a given input vector y ∈ Rp as follows:

ŴD(y;P) = D̂(y;Ms∗) (1.69)

s∗ = arg min
s∈{1,2,··· ,S}

∥y − D̂(y;Ms)∥2, (1.70)

where D̂(y;Ms) is the output of s−th CDMMA estimated using (1.64).

Algorithm 3 requires choosing the values for subspace dimension n and ratio rmax. Thus, we demonstrate the effect of n
and rmax on the abstraction level of data representation through examples in Fig. 1.4 and Fig. 1.5.
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Figure 1.4: On a dataset consisting of 1000 randomly chosen samples of digit 8 from MNIST digits dataset, different wide
CDMMAs were built using Algorithm 3 choosing rmax = 0.5, L = 5, and n from {20, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1}.
Corresponding to the input sample (shown at the extreme left of the figure), the estimated outputs of different wide
CDMMAs (built using different values of n) are displayed. It is observed that as n keeps on decreasing, the autoencoder
learns increasingly abstract data representation.

Figure 1.5: On a dataset consisting of 1000 randomly chosen samples of digit 8 from MNIST
digits dataset, different wide CDMMAs were built using Algorithm 3 choosing rmax from
{0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.02, 0.015, 0.01, 0.005, 0.002}, n = 20, and L = 5. Corresponding to the in-
put sample (shown at the extreme left of the figure), the estimated outputs of different wide CDMMAs (built using
different rmax values) are displayed. It is observed that as the rmax value keeps on decreasing, the autoencoder learns
increasingly abstract data representation.

1.2.5 Classification Applications
The autoencoders could be applied for classification via learning data representation for each class through a separate
autoencoder. Formally, the classifier is defined as in Definition 15 and Algorithm 4 is stated for the variational learning of
classifier.

Definition 15 (A Classifier) A classifier, C : Rp → {1, 2, · · · , C}, maps a vector y ∈ Rp to C(y) ∈ {1, 2, · · · , C} such
that

C(y; {Pc}Cc=1) = arg min
c ∈ {1,2,··· ,C}

∥y − ŴD(y;Pc)∥2 (1.71)

where ŴD(y;Pc), computed using (1.69), is the output of c−th wide CDMMA. The classifier assigns to an input vector
the label of that class whose associated autoencoder best reconstructs the input vector.

Algorithm 4 Variational learning of the classifier

Require: Labeled data set Y =
{
Yc | Yc =

{
yi,c ∈ Rp | i ∈ {1, · · · , Nc}

}
, c ∈ {1, · · · , C}

}
; the subspace dimen-

sion n ∈ {1, · · · , p}; ratio rmax ∈ (0, 1]; the number of layers L ∈ Z+.
1: for c = 1 to C do
2: Build a wide CDMMA, Pc = {Ms

c}
Sc
s=1, by applying Algorithm 3 on Yc for the given n, rmax, and L.

3: end for
4: return the parameters set {Pc}Cc=1.

1.3 Privacy-Preserving Transferrable Deep Learning

1.3.1 An Optimal (ϵ, δ)−Differentially Private Noise Adding Mechanism
This subsection reviews an optimal noise adding mechanism that was derived using an information theoretic approach
in [6]. We consider a training dataset consisting of N number of samples with each sample having p number of attributes.
Assuming the data as numeric, the dataset can be represented by a matrix, say Y ∈ Rp×N . The machine learning
algorithms typically train a model using available dataset. A given machine learning algorithm, training a model using
data matrix Y, can be represented by a mapping, A : Rp×N → M, where M is the model space. That is, for a given
dataset Y, the algorithm builds a modelM ∈M such thatM = A(Y). The privacy of data can be preserved via adding
a suitable random noise to data matrix before the application of algorithm A on the dataset. This will result in a private
version of algorithm A which is formally defined by Definition 16.
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Definition 16 (A Private Algorithm on Data Matrix) Let A+ : Rp×N → Range(A+) be a mapping defined as

A+ (Y) = A (Y + V) , V ∈ Rp×N (1.72)

where V is a random noise matrix with fvi
j
(v) being the probability density function of its (j, i)−th element vij; vij and

vi
′

j are independent from each other for i ̸= i′; and A : Rp×N →M (where M is the model space) is a given mapping
representing a machine learning algorithm. The range of A+ is as

Range(A+) =
{
A (Y + V) | Y ∈ Rp×N ,V ∈ Rp×N

}
. (1.73)

We intend to protect the algorithmA+ from an adversary who seeks to gain an information about the data from algorithm’s
output by perturbing the values in a sample of the dataset. We seek to attain differential privacy for algorithm A+ against
the perturbation in an element of Y, say (j0, i0)−th element, such that magnitude of the perturbation is upper bounded by
a scalar d. Following [7], the d−adjacency and (ϵ, δ)−differential privacy definitions are provided in Definition 17 and
Definition 18 respectively.

Definition 17 (d−Adjacency for Data Matrices) Two matrices Y,Y′ ∈ Rp×N are d−adjacent if for a given d ∈ R+,
there exist i0 ∈ {1, 2, · · · , N} and j0 ∈ {1, 2, · · · , p} such that ∀i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , p},∣∣yij − y′ij

∣∣ ≤ { d, if i = i0, j = j0
0, otherwise

where yij and y′ij denote the (j, i)−th element of Y and Y′ respectively. Thus, Y and Y′ differ by only one element and
the magnitude of the difference is upper bounded by d.

Definition 18 ((ϵ, δ)−Differential Privacy for A+ [6]) The algorithm A+ (Y) is (ϵ, δ)−differentially private if

Pr{A+ (Y) ∈ O} ≤ exp(ϵ)Pr{A+ (Y′)) ∈ O}+ δ (1.74)

for any measurable set O ⊆ Range(A+) and for d−adjacent matrices pair (Y,Y′).

Intuitively, Definition 18 means that changing the value of an element in the training data matrix by an amount upper
bounded by d can change the distribution of output of the algorithm A+ only by a factor of exp(ϵ) with probability at
least 1− δ. Thus, the lower value of ϵ and δ lead to a higher amount of privacy.

Result 2 (An Optimal (ϵ, δ)−Differentially Private Noise [6]) The probability density function of noise, that minimizes
the expected noise magnitude together with satisfying the sufficient conditions for (ϵ, δ)−differential privacy for A+, is
given as

f∗
vi
j
(v; ϵ, δ, d) =

{
δ Diracδ(v), v = 0

(1− δ) ϵ
2d

exp(− ϵ
d
|v|), v ∈ R \ {0} (1.75)

where Diracδ(v) is Dirac delta function satisfying
∫∞
−∞ Diracδ(v) dv = 1.

Proof: The proof follows from [6].

Remark 1 (Generating Random Samples from f∗
vi
j
) The method of inverse transform sampling can be used to generate

random samples from cumulative distribution function. The cumulative distribution function of f∗
vi
j

is given as

Fvi
j
(v; ϵ, δ, d) =


1−δ
2 exp( ϵdv), v < 0

1+δ
2 , v = 0

1− 1−δ
2 exp(− ϵ

dv), v > 0
(1.76)

The inverse cumulative distribution function is given as

F−1
vi
j
(tij ; ϵ, δ, d) =


d
ϵ log(

2tij
1−δ ), tij <

1−δ
2

0, tij ∈ [ 1−δ
2 , 1+δ

2 ]

−d
ϵ log(

2(1−tij)

1−δ ), tij >
1+δ
2

, tij ∈ (0, 1). (1.77)

Thus, via generating random samples from the uniform distribution on (0, 1) and using (1.77), the noise additive mecha-
nism can be implemented.

For a given value of (ϵ, δ, d), Algorithm 5 is stated for a differentially private approximation of a data samples.
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Algorithm 5 Differentially private approximation of data samples

Require: Data set Y =
{
yi ∈ Rp | i ∈ {1, · · · , N}

}
; differential privacy parameters: d ∈ R+, ϵ ∈ R+, δ ∈ (0, 1).

1: A differentially private approximation of data samples is provided as

y+i
j = yij + F−1

vi
j
(tij ; ϵ, δ, d), t

i
j ∈ (0, 1) (1.78)

where F−1
vi
j

is given by (1.77) and y+i
j is j−th element of y+i ∈ Rp.

2: return Y+ =
{
y+i ∈ Rp | i ∈ {1, · · · , N}

}
.

1.3.2 Differentially Private Semi-Supervised Transfer and Multi-Task Learning
We consider a scenario of knowledge transfer from a dataset consisting of labeled samples from a domain (referred to as
source domain) to another dataset consisting of mostly unlabelled samples and only a few labelled samples from another
domain (referred to as target domain) such that both source and target datasets have been sampled from the same set
of classes but in their respective domains. The aim is to transfer the knowledge extracted by a classifier trained using
source dataset to the classifier of target domain such that privacy of source dataset is preserved. Let {Ysr

c }Cc=1 be the
labelled source dataset where Ysr

c = {yi,csr ∈ Rpsr | i ∈ {1, · · · , Nsr
c }} represents c−th labelled samples. The target

dataset consist of a few labelled samples {Ytg
c }Cc=1 (with Ytg

c = {yi,ctg ∈ Rptg | i ∈ {1, · · · , N tg
c }}) and another set

of unlabelled samples Ytg
∗ = {yi,∗tg ∈ Rptg | i ∈ {1, · · · , N tg

∗ }}. A generalized setting is considered where source
and target data dimensions could be different, i.e., psr ̸= ptg . Our approach to semi-supervised transfer and multi-task
learning consists of following steps:

Differentially private source domain classifier: Since the noise adding mechanism (i.e. Result 2) is independent of
the choice of algorithm operating on training data matrix, therefore any algorithm operating on noise added data samples
will remain (ϵ, δ)−differentially private. That is, differential privacy remains invariant to any post-processing of noise
added data samples. This allows us to build a differentially private classifier as stated in Algorithm 6.

Algorithm 6 Variational learning of a differentially private classifier
Require: Differentially private approximated dataset: Y+ = {Y+

c | c ∈ {1, · · · , C}}; the subspace dimension n ∈
{1, · · · , p}; ratio rmax ∈ (0, 1]; the number of layers L ∈ Z+.

1: Build a classifier, {P+
c }Cc=1, by applying Algorithm 4 on Y+ for the given n, rmax, and L.

2: return {P+
c }Cc=1.

For a given differential privacy parameters: d, ϵ, δ; Algorithm 5 is applied on Ysr
c to obtain the differentially private

approximated data samples, Y+sr
c = {y+i,c

sr ∈ Rpsr | i ∈ {1, · · · , Nsr
c }}, for all c ∈ {1, · · · , C}. Algorithm 6 is applied

on {Y+sr
c }Cc=1 to build a differentially private source domain classifier characterized by parameters sets {P+sr

c }Cc=1.

Differentially private source domain latent subspace transformation-matrix For a lower-dimensional representation
of both source and target samples, a subspace dimension, nst ∈ {1, 2, · · · ,min(psr, ptg)}, is chosen. Let V +sr ∈
Rnst×psr be the transformation-matrix with its i−th row equal to transpose of eigenvector corresponding to i−th largest
eigenvalue of sample covariance matrix computed on source samples.

Target domain latent subspace transformation-matrix Let V tg ∈ Rnst×ptg be the transformation-matrix with its
i−th row equal to transpose of eigenvector corresponding to i−th largest eigenvalue of sample covariance matrix com-
puted on target samples.

Subspace alignment for heterogenous domains For the case of heterogenous source and target domains (i.e. psr ̸=
ptg), we follow subspace alignment approach where a target sample is first aligned to source data in subspace followed
by a linear transformation to source-data-space. A target sample can be mapped to source-data-space via following
transformation:

ytg→sr :=

{
ytg, psr = ptg
(V +sr)TV tgytg, psr ̸= ptg

(1.79)

Both labelled and unlabelled target datasets are transformed to define the following sets:

Ytg→sr
c := {ytg→sr | ytg ∈ Ytg

c } (1.80)
Ytg→sr

∗ := {ytg→sr | ytg ∈ Ytg
∗ }. (1.81)
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Building of target domain classifier Our idea is to iteratively build target domain classifier for predicting the labels of
unlabelled target data samples. The k−th iteration, for k ∈ {1, · · · , it_max}, consists of following updates:

{Ptg
c |k}Cc=1 = Algorithm 4

({
Ytg→sr

c ∪Ytg→sr
∗,c |k−1

}C
c=1

, n|k, rmax, L
)

(1.82)

Ytg→sr
∗,c |k =

{
yi,∗tg→sr ∈ Ytg→sr

∗ | C(yi,∗tg→sr; {Ptg
c |k}Cc=1) = c, i ∈ {1, · · · , N tg

∗ }
}

(1.83)

where {n|1, n|2, · · · } is a monotonically non-decreasing sequence. The reason for n to follow a monotonically non-
decreasing curve during the iterations is following:

We intend to use higher-level data features during initial iterations for updating the predicted-labels of unlabeled
target data samples and as the number of iterations increases more and more lower-level data features are intended
to be included in the process of updating the predicted-labels. Since the lower values of n lead to modeling of
higher-level data features and higher values lead to modeling of lower-level data features (as illustrated in Fig. 1.4),
n values are chosen as to form a monotonically non-decreasing sequence.

source2target model The target samples associated to a class can be filtered through the source domain autoencoder
associated to the same class for defining the following dataset:

D :=
{(
ŴD(y;P+sr

c ), y
)
| y ∈

{
Ytg→sr

c ∪Ytg→sr
∗,c |it_max

}
, c ∈ {1, · · · , C}

}
(1.84)

where ŴD(·; ·) is defined as in (1.69), Ytg→sr
c is defined as in (1.80), and Ytg→sr

∗,c is defined as in (1.83). Here,
ŴD(y;P+sr

c ), where y ∈ {Ytg→sr
c ∪ Ytg→sr

∗,c |it_max}, is a representation of a c−th labelled traget sample y in the
source domain c−th labelled data space represented by the wide CDMMA P+sr

c . The mapping from source to target
domain can be learned via building a variational membership-mappings based model using Algorithm 1 on the dataset D.
That is,

Msr→tg = Algorithm 1 (D,Mmax) (1.85)
Mmax = min(⌈N tg/2⌉, 1000) (1.86)

where N tg = |D| is the total number of target samples.

A transfer and multi-task learning scenario: Both source and target domain classifiers are combined with source2target
model for predicting the label associated to a target sample ytg→sr as

ĉ(ytg→sr; {Ptg
c }Cc=1, {P+sr

c }Cc=1,Msr→tg) = arg min
c ∈ {1,2,··· ,C}

{
min

(∥∥∥ytg→sr − ŴD(ytg→sr;Ptg
c )
∥∥∥2 ,∥∥∥ytg→sr − ŷ

(
ŴD(ytg→sr;P+sr

c );Msr→tg
)∥∥∥2 ,∥∥∥ytg→sr − ŴD(ytg→sr;P+sr

c )
∥∥∥2)} . (1.87)

where ŷ (·;Msr→tg) is the output of source2target model computed using (1.60). That is, ytg→sr is assigned the c−th
class label, if

• the autoencoder associated to c−th class of target data space (which is characterized by set of parameters Ptg
c )

could best reconstruct ytg→sr, or

• the output of the source2target model with the input as representation of ytg→sr in source domain c−th labelled
data space could best reconstruct ytg→sr, or

• the differentially private autoencoder associated to c−th class of source data space (which is characterized by set of
parameters P+sr

c ) could best reconstruct ytg→sr.

1.4 Experiments
Differentially private transferrable learning methodology was implemented using MATLAB R2017b. The experiments
have been made on an iMac (M1, 2021) machine with 8 GB RAM. The implementational details for the method are
described as below:

• We study experimentally the differential privacy (Definition 18) of the source domain training data such that for
all 1−adjacent training data matrices, the absolute value of privacy-loss incurred by observing the output of any
computation algorithm will be bounded by ϵ with probability at least 1 − δ. That is, d is taken as equal to 1 for
defining adjacent matrices in Definition 18.
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Figure 1.6: An example of the noise added to a randomly selected sample from MNIST dataset for different values of ϵ
with δ = 1e−5.

• Algorithm 5, for a given d and (ϵ, δ), is applied to obtain a differentially private approximation of source dataset.

• Differentially private source domain classifier is built using Algorithm 6 taking subspace dimension as equal to
min(20, psr) (where psr is the dimension of source data samples), ratio rmax as equal to 0.5, and number of layers
as equal to 5.

• Differentially private source domain latent subspace transformation-matrix is computed with nst = min(⌈psr/2⌉, ptg),
where ptg is the dimension of target data samples.

• Initial target domain classifier is built using Algorithm 4 on labelled target samples taking subspace dimension as
equal to min(20,min1≤c≤C{N tg

c }−1) (where N tg
c is the number of c−th class labelled target samples), ratio rmax

as equal to 1, and number of layers as equal to 1.

• The target domain classifier is updated using (1.82) and (1.83) till 4 iterations taking the monotonically non-
decreasing subspace dimension n sequence as {5, 10, 15, 20} and rmax=0.5.

• The label associated to a target data point is predicted under transfer and multi-task learning scenarios using (1.87).

1.4.1 Demonstrative Examples Using MNIST and USPS Datasets
1.4.1.1 MNIST dataset

Our first experiment is on the widely used MNIST digits dataset containing 28× 28 sized images divided into training set
of 60000 images and testing set of 10000 images. The images’ pixel values were divided by 255 to normalize the values
in the range from 0 to 1. The 28× 28 normalized values of each image were flattened to an equivalent 784−dimensional
data vector. The transfer learning experiment was carried in the same setting as in [8] where 60000 training samples
constituted the source dataset; a set of 9000 test samples constituted target dataset, and the performance was evaluated on
the remaining 1000 test samples. Out of 9000 target samples, only 10 samples per class were labelled and rest 8900 target
samples remained as unlabelled.

What is the sufficiently low value of privacy-loss bound? A lower privacy-loss bound implies a larger amount of
noise being added to data samples. For an interpretation of the privacy-loss bound ϵ in terms of amount of noise required
to be added to preserve data’s privacy, the examples of noise added samples corresponding to different values of ϵ are
provided in Fig. 1.6. It is observed from Fig. 1.6 that ϵ more than 1 is not sufficiently low to preserve privacy in this case.
Thus, the experiments were carried out with privacy-loss bound ϵ ∈ {0.1, 0.2, 0.5, 1} while keeping failure probability
fixed at δ = 1e−5.

Robust performance Table 1.1 reports the values of (ϵ, δ)−differential privacy guarantees and corresponding clas-
sification accuracies. The proposed method’s consistent performance over a wide range of privacy-loss bound ϵ ver-
ifies the robustness towards the perturbations in source data caused by the privacy requirements demanded by source
data owner. For a comparison, the proposed method is able to learn 95.1% accurate model together with providing
(0.1, 1e−5)−differential privacy guarantee, which is a better result than the existing result [9] of achieving 90% accuracy
for (0.5, 1e−5)−differential privacy on MNIST dataset.

1.4.1.2 Learning across heterogeneous MNIST and USPS domains

We considered a problem of heterogeneous transfer learning between MNIST to USPS dataset. The USPS is another
dataset that has 7291 training and 2007 test images of digits where each image has 16× 16 (=256) grayscale pixels.
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Table 1.1: Privacy and utility results on MNIST dataset. The second column reports the privacy-loss bound ϵ and failure
probability δ of (ϵ, δ)−differential privacy guarantee.

Method (ϵ, δ) classification accuracy
proposed transfer and multi-task learning (0.1, 1e−5) 95.1%
proposed transfer and multi-task learning (0.2, 1e−5) 95.1%
proposed transfer and multi-task learning (0.5, 1e−5) 95.1%
proposed transfer and multi-task learning (1, 1e−5) 95.1%

[9] (0.5, 1e−5) 90%

Table 1.2: Results of 10 independent MNIST→USPS experiments expressed in average accuracy ± standard deviation.
method accuracy (in %)

(0.1, 1e−5)−differentially private proposed 92.23± 0.87
(1, 1e−5)−differentially private proposed 92.28± 0.62

non private proposed 92.37± 0.70
non private Deep Variational Transfer [10] 92.03± 0.38

MNIST→USPS The aim of this experiment was to study how privacy-preservation affect transferring knowledge from
a higher resolution and more varied MNIST dataset to USPS dataset. The MNIST→USPS semi-supervised transfer
learning problem was previously studied in [10]. For a comparison, MNIST→USPS problem was considered in the same
experimental setting as in [10] where only 100 target samples were labelled and remaining 7191 samples remained as
unlabelled. The experiments were carried out at privacy-loss bound ϵ ∈ {0.1, 1} while keeping failure probability fixed
at δ = 1e−5. Further, the non-private version of the proposed method corresponding to the case of ϵ = ∞ was also
considered. The performance was evaluated on target domain testing dataset in-terms of classification accuracy.

Table 1.2 reports the results of 10 independent MNIST→USPS experiments. As observed in Table 1.2, the proposed
method, despite being privacy-preserving and having not required an access to source data samples, performs comparable
to the Deep Variational Transfer (a variational autoencoder that transfers knowledge across domains using a shared latent
Gaussian mixture model) proposed in [10]. Further, the proposed method’s consistent performance over a wide range of
privacy-loss bound ϵ verifies the robustness of the target model towards the perturbations in source data caused by the
privacy requirements demanded by source data owner.

Effect of labelled target sample size To study the effect of number of labelled target samples, USPS→MNIST problem
is considered with number of labelled target samples varying from 100 to 500. Table 1.3 reports the classification accuracy
on target testing dataset as the number of labelled target samples is varied. It is verified that the proposed approach to
combine source and target domain classifiers, as in (1.87), leads to an increasing performance with increasing labelled
target sample size while preserving the privacy of source domain data.

1.4.2 Comparisons Using Office and Caltech256 Datasets
“Office+Caltech256” dataset has 10 common categories of both Office and Caltech256 datasets. This dataset has been
widely used [11–14] for evaluating multi-class accuracy performance in a standard domain adaptation setting with a small
number of labelled target samples. The dataset has fours domains: amazon, webcam, dslr, and caltech256. We follow the
experimental setup of [11–14]:

1. the number of training samples per class in the source domain is 20 for amazon and is 8 for other three domains;

2. the number of labelled samples per class in the target domain is 3 for all the four domains;

3. 20 random train/test splits are created and the performance on target domain test samples is averaged over 20
experiments.

Table 1.3: Effect of labelled target sample size on performance in USPS→MNIST problem.

method number of
labelled target samples

classification accuracy
on target testing data

(0.1, 1e−5)−differentially private proposed 100 92.29%
(0.1, 1e−5)−differentially private proposed 200 95.86%
(0.1, 1e−5)−differentially private proposed 300 97.31%
(0.1, 1e−5)−differentially private proposed 400 97.63%
(0.1, 1e−5)−differentially private proposed 500 97.99%
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Table 1.4: Accuracy (in %, averaged over 20 experiments) obtained in amazon→caltech256 semi-supervised transfer
learning experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 80.6

SVM-t (without knowledge transfer) VGG-FC6 73.4
non-private ILS (1-NN) VGG-FC6 83.3

non-private CDLS VGG-FC6 78.1
non-private MMDT VGG-FC6 78.7

non-private HFA VGG-FC6 75.5
non-private OBTL SURF 41.5

non-private ILS (1-NN) SURF 43.6
non-private CDLS SURF 35.3

non-private MMDT SURF 36.4
non-private HFA SURF 31.0

Table 1.5: Accuracy (in %, averaged over 20 experiments) obtained in amazon→dslr semi-supervised transfer learning
experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 91.2

SVM-t (without knowledge transfer) VGG-FC6 90.0
non-private ILS (1-NN) VGG-FC6 87.7

non-private CDLS VGG-FC6 86.9
non-private MMDT VGG-FC6 77.1

non-private HFA VGG-FC6 87.1
non-private OBTL SURF 60.2

non-private ILS (1-NN) SURF 49.8
non-private CDLS SURF 60.4

non-private MMDT SURF 56.7
non-private HFA SURF 55.1

Following [12], the deep-net VGG-FC6 features are extracted from the images and the proposed method is compared with

1. SVM-t: A base-line is created using a linear SVM classifier trained using only the labelled target samples without
transfer learning.

2. ILS (1-NN) [12]: This method learns an Invariant Latent Space (ILS) to reduce the discrepancy between domains
and uses Riemannian optimization techniques to match statistical properties between samples projected into the
latent space from different domains.

3. CDLS [15]: The Cross-Domain Landmark Selection (CDLS) method derives a domain-invariant feature subspace
for heterogeneous domain adaptation.

4. MMDT [14]: The Maximum Margin Domain Transform (MMDT) method adapts max-margin classifiers in a multi-
class manner by learning a shared component of the domain shift as captured by the feature transformation.

5. HFA [16]: The Heterogeneous Feature Augmentation (HFA) method learns common latent subspace and a classifier
under max-margin framework.

6. OBTL [13]: The Optimal Bayesian Transfer Learning (OBTL) method employs Bayesian framework to transfer
learning through modeling of a joint prior probability density function for feature-label distributions of the source
and target domains.

The “Office+Caltech256” dataset has been previously studied in [11–14] using SURF features. Therefore, the state-
of-art results on this dataset using SURF features are additionally considered for a comparison. There are in total 4
domains associated to “Office+Caltech256” dataset. Taking a domain as source and other domain as target, 12 different
transfer learning experiments can be performed on these 4 domains. Table 1.4, Table 1.5, Table 1.6, Table 1.7, Table 1.8,
Table 1.9, Table 1.10, Table 1.11, Table 1.12, Table 1.13, Table 1.14, and Table 1.15 report the results and the first two
best performances have been marked.
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Table 1.6: Accuracy (in %, averaged over 20 experiments) obtained in amazon→webcam semi-supervised transfer learn-
ing experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 89.5

SVM-t (without knowledge transfer) VGG-FC6 86.9
non-private ILS (1-NN) VGG-FC6 90.7

non-private CDLS VGG-FC6 91.2
non-private MMDT VGG-FC6 82.5

non-private HFA VGG-FC6 87.9
non-private OBTL SURF 72.4

non-private ILS (1-NN) SURF 59.7
non-private CDLS SURF 68.7

non-private MMDT SURF 64.6
non-private HFA SURF 57.4

Table 1.7: Accuracy (in %, averaged over 20 experiments) obtained in caltech256→amazon semi-supervised transfer
learning experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 91.5

SVM-t (without knowledge transfer) VGG-FC6 84.4
non-private ILS (1-NN) VGG-FC6 89.7

non-private CDLS VGG-FC6 88.0
non-private MMDT VGG-FC6 85.9

non-private HFA VGG-FC6 86.2
non-private OBTL SURF 54.8

non-private ILS (1-NN) SURF 55.1
non-private CDLS SURF 50.9

non-private MMDT SURF 49.4
non-private HFA SURF 43.8

Table 1.8: Accuracy (in %, averaged over 20 experiments) obtained in caltech256→dslr semi-supervised transfer learning
experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 91.6

SVM-t (without knowledge transfer) VGG-FC6 90.2
non-private ILS (1-NN) VGG-FC6 86.9

non-private CDLS VGG-FC6 86.3
non-private MMDT VGG-FC6 77.9

non-private HFA VGG-FC6 87.0
non-private OBTL SURF 61.5

non-private ILS (1-NN) SURF 56.2
non-private CDLS SURF 59.8

non-private MMDT SURF 56.5
non-private HFA SURF 55.6
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Table 1.9: Accuracy (in %, averaged over 20 experiments) obtained in caltech256→webcam semi-supervised transfer
learning experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 91.6

SVM-t (without knowledge transfer) VGG-FC6 88.8
non-private ILS (1-NN) VGG-FC6 91.4

non-private CDLS VGG-FC6 89.7
non-private MMDT VGG-FC6 82.8

non-private HFA VGG-FC6 86.0
non-private OBTL SURF 71.1

non-private ILS (1-NN) SURF 62.9
non-private CDLS SURF 66.3

non-private MMDT SURF 63.8
non-private HFA SURF 58.1

Table 1.10: Accuracy (in %, averaged over 20 experiments) obtained in dslr→amazon semi-supervised transfer learning
experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 90.7

SVM-t (without knowledge transfer) VGG-FC6 84.4
non-private ILS (1-NN) VGG-FC6 88.7

non-private CDLS VGG-FC6 88.1
non-private MMDT VGG-FC6 83.6

non-private HFA VGG-FC6 85.9
non-private OBTL SURF 54.4

non-private ILS (1-NN) SURF 55.0
non-private CDLS SURF 50.7

non-private MMDT SURF 46.9
non-private HFA SURF 42.9

Table 1.11: Accuracy (in %, averaged over 20 experiments) obtained in dslr→caltech256 semi-supervised transfer learn-
ing experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 81.4

SVM-t (without knowledge transfer) VGG-FC6 73.6
non-private ILS (1-NN) VGG-FC6 81.4

non-private CDLS VGG-FC6 77.9
non-private MMDT VGG-FC6 71.8

non-private HFA VGG-FC6 74.8
non-private OBTL SURF 40.3

non-private ILS (1-NN) SURF 41.0
non-private CDLS SURF 34.9

non-private MMDT SURF 34.1
non-private HFA SURF 30.9
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Table 1.12: Accuracy (in %, averaged over 20 experiments) obtained in dslr→webcam semi-supervised transfer learning
experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 88.7

SVM-t (without knowledge transfer) VGG-FC6 86.9
non-private ILS (1-NN) VGG-FC6 95.5

non-private CDLS VGG-FC6 90.7
non-private MMDT VGG-FC6 86.1

non-private HFA VGG-FC6 86.9
non-private OBTL SURF 83.2

non-private ILS (1-NN) SURF 80.1
non-private CDLS SURF 68.5

non-private MMDT SURF 74.1
non-private HFA SURF 60.5

Table 1.13: Accuracy (in %, averaged over 20 experiments) obtained in webcam→amazon semi-supervised transfer
learning experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 92.0

SVM-t (without knowledge transfer) VGG-FC6 84.8
non-private ILS (1-NN) VGG-FC6 88.8

non-private CDLS VGG-FC6 87.4
non-private MMDT VGG-FC6 84.7

non-private HFA VGG-FC6 85.1
non-private OBTL SURF 55.0

non-private ILS (1-NN) SURF 54.3
non-private CDLS SURF 51.8

non-private MMDT SURF 47.7
non-private HFA SURF 56.5

Table 1.14: Accuracy (in %, averaged over 20 experiments) obtained in webcam→caltech256 semi-supervised transfer
learning experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 82.3

SVM-t (without knowledge transfer) VGG-FC6 75.0
non-private ILS (1-NN) VGG-FC6 82.8

non-private CDLS VGG-FC6 78.2
non-private MMDT VGG-FC6 73.6

non-private HFA VGG-FC6 74.4
non-private OBTL SURF 37.4

non-private ILS (1-NN) SURF 38.6
non-private CDLS SURF 33.5

non-private MMDT SURF 32.2
non-private HFA SURF 29.0
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Table 1.15: Accuracy (in %, averaged over 20 experiments) obtained in webcam→dslr semi-supervised transfer learning
experiments.

method feature type accuracy (%)
(0.1, 1e−5)−differentially private proposed VGG-FC6 89.6

SVM-t (without knowledge transfer) VGG-FC6 88.9
non-private ILS (1-NN) VGG-FC6 94.5

non-private CDLS VGG-FC6 88.5
non-private MMDT VGG-FC6 85.1

non-private HFA VGG-FC6 87.3
non-private OBTL SURF 75.0

non-private ILS (1-NN) SURF 70.8
non-private CDLS SURF 60.7

non-private MMDT SURF 67.0
non-private HFA SURF 56.5

Table 1.16: Comparison of the methods on “Office+Caltech256” dataset.

method
number of experiments

in which method
performed best

number of experiments
in which method

performed 2nd best
(0.1, 1e−5)−differentially private proposed 7 3

non-private ILS (1-NN) 5 5
non-private CDLS 1 2
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Finally, Table 1.16 summarizes the overall performance of top three methods. As observed in Table 1.16, the proposed
method remains as best performing in maximum number of experiments. The most remarkable result observed is that the
proposed transfer and multi-task learning method, despite ensuring privacy-loss bound to be as low as 0.1 and not requiring
an access to source data samples, performs better than even the non-private methods.

1.5 Concluding Remarks
We presented a novel approach to differentially private semi-supervised transfer and multi-task learning that exploits
the variational deep mappings and an optimal noise adding mechanism for achieving a robustness of target model to-
wards the perturbations in source data caused by the privacy requirements demanded by source data owner. A variational
membership-mapping based approach was introduced that sufficiently addresses all of the requirements identified regard-
ing the privacy-preserving transferrable deep learning problem. Numerous experiments were carried out using MNIST,
USPS, Office, and Caltech256 datasets to verify the competitive performance of the proposed method. The experimental
studies further verify that our approach is capable of achieving a low privacy-loss bound without letting the accuracy be
much degraded.
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2. Secure Multiparty Computation and
Homomorphic Encryption (T3.3)

A methodology for practical secure privacy-preserving distributed machine (deep) learning is proposed via addressing
the core issues of fully homomorphic encryption. Considering that private data is distributed and the training data may
contain directly or indirectly an information about private data, an architecture and a methodology are suggested for
mitigating the impracticality issue of fully homomorphic encryption (arising from large computational overhead) via
very fast gate-by-gate bootstrapping and introducing a learning scheme that requires homomorphic computation of only
efficient-to-evaluate functions.

The emergence of cloud infrastructure not only raises the concern of protecting data in storage, but also requires an
ability of performing computations on data while preserving the data privacy. Fully homomorphic encryption (FHE) be-
ing capable of directly performing an unbounded number of operations on encrypted data forms a solution to the privacy
concerns in the cloud computing scenario. The first FHE scheme [17] is based on ideal lattices and the bootstrapping pro-
cedure is introduced to reduce the noise contained in a ciphertext for allowing arbitrary computations. The bootstrapping
operation is performed on a ciphertext via evaluating the decryption function homomorphically using the bootstrapping
key (which is the encryption of the private decryption key under the public encryption key). Bootstrapping is the compu-
tationally most expensive part of a homomorphic encryption scheme. The theoretical breakthrough of [17] was followed
by several attempts to develop more practical FHE schemes. The scheme introduced in [18] uses only elementary modulo
arithmetic and is homomorphic with regard to both addition and multiplication. This scheme was improved in [19] with
reduced public key size, extended in [20] to support encrypting and homomorphically processing a vector of plaintexts as
a single ciphertext, and generalized to non-binary messages in [21]. Schemes based on a different hard problem, referred
to as Learning With Errors (LWE) problem [22], were constructed and many current schemes still rely on LWE or its
variants. A FHE scheme constructed in [23] is based solely on the standard LWE assumption that is known to be at least
as hard as solving hard problems in general lattices. In a variant of the LWE problem, called ring learning with errors
problem (RLWE) problem, the algebraic structure of the underlying hard problem reduces the key sizes and speeds up
the homomorphic operations. A leveled fully homomorphic encryption scheme based on LWE or RLWE, without boot-
strapping procedure, was proposed in [24]. The ciphertexts contain a certain amount of noise for security purposes that
grows with homomorphic operations. For a better management of the noise growth, [24] introduced a modulus switch-
ing technique where a complete ladder of moduli is used for scaling down the ciphertext to the next modulus after each
multiplication. A tensoring technique for LWE-based FHE that reduced ciphertext noise growth after multiplication from
quadratic to linear was introduced in [25]. As the scheme of [25] does no longer require the rescaling of the ciphertext,
this scheme was called a scale-invariant fully homomorphic encryption scheme. An RLWE version of the scale-invariant
scheme of [25] was created in [26]. A technique for building LWE based FHE scheme called as approximate eigenvec-
tor method in which homomorphic addition and multiplication are just matrix addition and multiplication was proposed
in [27]. The essence of this scheme is that the secret key is an approximate eigenvector of the ciphertext matrix and the
message is the corresponding eigenvalue. Several works that followed the theoretical breakthrough of [17] were aimed
at improving the bootstrapping as the bootstrapping remained the bottleneck for an efficient FHE in practice. A much
faster bootstrapping, based on a scheme similar to the type of [27] that allows to homomorphically compute simple bit
operations and refresh (bootstrap) the resulting output in less than a second, was devised in [28]. Finally, the TFHE
scheme was proposed in [29, 30] that features an improved bootstrapping procedure that is considerably more efficient
than the previous state of the art. The TFHE scheme generalizes previous structures and schemes over the torus (i.e., the
reals modulo 1) and improves the bootstrapping dramatically. For practical applications, TFHE is an open-source C/C++
library [31] implementing the ring-variant of [27] together with the optimizations of [28–30]. TFHE library implements
a very fast gate-by-gate bootstrapping and supports the homomorphic evaluation of the binary gates. The library allows
to evaluate homomorphically an arbitrary boolean circuit composed of binary gates without restriction on the number
of gates or on their composition, over encrypted data, without decrypting. However, the bootstrapped bit operations are
still several times slower than their plaintext equivalents. Thus for an efficient secure machine learning scenario in prac-
tice, homomorphic evaluation of the function with smallest possible number of gates is one of the optimality criteria for
designing learning algorithms with distributed data.

26



Requirement: An efficient secure machine (deep) learning with fully homomorphic encryption in practice demands
an approach ensuring that the homomorphic evaluation of functions would require evaluating the circuits with num-
ber of gates as small as possible.

The requirement, identified for a practical secure privacy-preserving learning, is fulfilled with an architecture assuming
that the complete data set on which we apply machine-learning based big data analytics, is distributed across different
organizational units and that learning models are constructed and applied within each unit independently, after which
these local models are combined into a global model. To combine local output data from different organizational units
into a global output, the data needs to be transmitted between organizations and, therefore, encryption is needed. Each
local model output is homomorphically encrypted and shared in the cloud where a global model (that combines the
distributed local models) is homomorphically evaluated in an efficient manner to predict the output. The issue regarding
the impracticality of homomorphic computation of global model due to large computational overhead is mitigated via two
ways:

1. Very fast gate-by-gate bootstrapping is implemented [31].

2. Combining local entities’ models requires homomorphic computation of only simpler functions (such as computing
minimum or maximum amongst scalars) that can be homomorphically evaluated in an efficient manner. For this, a
rule-based fuzzy model can be used for combining the local models [32, 33].
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3. Verification of Differential Privacy Deep
Learning Models (T3.4)

3.1 Membership Inference Attack on SERUMS Model
One of the most known attacks on machine learning models is membership inference. Given a model and an input
record, membership inference attempts to determine whether the record was used during the model training. The attack
is developed from the assumption that models in general perform better on the entries from the training dataset, having
more confidence in the output. A successful attack can raise a significant privacy risk, as the training datasets can contain
private patients data.

The membership inference attack has been originally proposed by [34], are later received multiple modifications. [35]
provides a classification and a survey on different types of membership inference attacks. Several works, for example
[36, 37], show that differential privacy can provide protection against the membership inference attacks, though [38]
argues that the accuracy-privacy trade-off is hard to achieve.

We investigate the effect of the (ϵ − δ) differential privacy on the capabilities of membership inference attacks. We
used models trained from a fabricated dataset provided by USTAN and attempted to perform several versions of the
membership inference attack.

In particular, we consider the following capabilities of an attacker:

• An attacker can obtain a dataset similar to the training one: it has similar data distribution as a training dataset, but
there are no common records in the two datasets.

• An attacker can call the trained model and can receive an output prediction vector. Note, that this assumption will
not be present in the SERUMS software: SERUMS models output a predicted class only.

• An attacker knows a structure of the trained model, but not the trained coefficients.

We consider the following types of membership inference attacks:

• Metric based attacks. These attacks compute metrics of prediction vectors and decide the membership by com-
paring the metrics with a threshold. The following metrics have been used:

– Prediction correctness: an input is a member of the training dataset if the model makes a correct prediction.
This simple version of attack is often considered as a baseline.

– Prediction loss: compares prediction loss with a threshold.

– Prediction confidence: compares prediction confidence with a threshold.

– Prediction entropy: compares prediction entropy with a threshold.

• Neural Network based attack. This attack attempts to build a binary classifier for membership prediction. In
order to train the classifier, a technique called shadow training is used. The idea is to build a set of shadow models
that mimic the behaviour of the target model. Since the attacker knows the training datasets of the shadow models,
their output is used as a training dataset for the binary classifier. We tried several different classifiers: staring from
support-vector classifiers, continuing with decision tree based classifiers up to a neural network. In one of the
experiments, we tried a different neural network for shadow models: the model has been taken from [38]. For the
shadow dataset we split the original USTAN dataset into two disjoint parts. Being the fabricated dataset, the two
parts are expected to have similar distributions. An extension of the attack proposes to build a binary classifier per
output class of the target model. We use the extension in our evaluation and report the average result of all classes.

We compare the results of attacks on several models. As a baseline, we take a model where without additional privacy
- no noise has been added to the training dataset. For the other models we added noise with different ϵ and δ. ϵ has values
in {0.1, 1, 5, 10}; δ has values in {0.01, 0.001, 0.0001}. The number of shadow models for neural network based attack
has been set to 20.
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Epsilon Correctness Loss Confidence Entropy
non-private 0.4906 0.4896 0.4905 0.5114

0.1 0.4905 0.4907 0.5057 0.5107
1 0.4896 0.4908 0.5057 0.5112
5 0.4897 0.4904 0.5059 0.5105

10 0.4906 0.4909 0.5067 0.5102

Figure 3.1: Metric based attack accuracy

Epsilon Accuracy
non-private 0.4815

0.1 0.4818
1 0.4815
5 0.4823

10 0.4818

Figure 3.2: Neural network based attack accuracy

The results for the metric based attacks are shown in Figure 3.1. All metrics on all models have the results close to
0.5 showing that none of the metrics can distinguish whether entries came from the training dataset.

The results for the neural network based attack are shown in Figure 3.2. Results with other classifiers have similar
values. For this attack we can see that the trained classifier cannot infer the membership on any model.

Thus we can conclude that none of the membership inference attacks succeeded. A potential reason to the low
performance of the attack is low accuracy of the target models: all models (including shadow models) have accuracy
around 0.62.
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4. Appendices

4.1 Evaluation of Membership Function
Using (1.34), we have〈

log(µyj ;fj (ỹj))
〉
µfj ;uj

= −0.5β∥ỹj − m̄fj∥2 − 0.5β
ν + (uj)

T (Kaa)
−1uj − 2

ν +M − 2
Tr(K̄xx)

where Tr(·) denotes the trace operator. Using (1.35) and (1.36),〈
log(µyj ;fj (ỹj))

〉
µfj ;uj

= −0.5β∥ỹj∥2 + β(ỹj)
TKxa(Kaa)

−1uj − 0.5β(uj)
T (Kaa)

−1KT
xaKxa(Kaa)

−1uj

−0.5β ν + (uj)
T (Kaa)

−1uj − 2

ν +M − 2

(
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

)
. (4.88)

Using (1.37),

µyj ;uj
(ỹj) ∝ exp

(
−0.5β∥ỹj∥2 + β(ỹj)

TKxa(Kaa)
−1uj − 0.5β(uj)

T (Kaa)
−1KT

xaKxa(Kaa)
−1uj

−0.5β (uj)
T (Kaa)

−1uj
ν +M − 2

(
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

)
+ {/(ỹj ,uj)}

)
where {/(ỹj ,uj)} represents all those terms which are independent of both ỹj and uj . Define

K̂uj
=

(
(Kaa)

−1 + β(Kaa)
−1KT

xaKxa(Kaa)
−1 + β

Tr(Kxx)− Tr((Kaa)
−1KT

xaKxa)

ν +M − 2
(Kaa)

−1

)−1

(4.89)

m̂uj
(ỹj) = βK̂uj

(Kaa)
−1(Kxa)

T ỹj (4.90)

to express µyj ;uj
(ỹj) as (1.38).

4.2 Solution of Optimization Problem
A new objective functional is defined after excluding uj−independent terms and taking into account the integral constraint
through a Lagrange multiplier γ:

J =
〈
(uj)

T K̂−1
uj

m̂uj (yj)− 0.5(uj)
T K̂−1

uj
uj + 0.5(uj)

T (Kaa)
−1uj − log(µuj (uj))− 0.5(uj)

T (Kaa)
−1uj

〉
µuj

+γ

{∫
RM

µuj
(uj) dλ

M (uj)− Cuj

}
(4.91)

=
1

Cuj

∫
RM

dλM (uj) µuj
(uj)

{
(uj)

T K̂−1
uj

m̂uj
(yj)− 0.5(uj)

T K̂−1
uj

uj − log(µuj
(uj))

}
+γ

{∫
RM

µuj
(uj) dλ

M (uj)− Cuj

}
(4.92)

Setting the functional derivative of J w.r.t. µuj
equal to zero,

0 = γ + (1/Cuj )
{
−1− 0.5(uj)

T K̂−1
uj

uj + (uj)
T K̂−1

uj
m̂uj (yj)− log(µuj (uj))

}
. (4.93)

That is,

µuj (uj) = exp(γCuj − 1) exp
(
−0.5(uj)T K̂−1

uj
uj + (uj)

T K̂−1
uj

m̂uj (yj)
)
. (4.94)

The optimal value of γ is obtained by solving
∫
RM µuj

dλM = Cuj
. This leads to

exp(γCuj
− 1)

√
(2π)M/|K̂−1

uj | exp
(
0.5
(
m̂uj (yj)

)T
K̂−1

uj
m̂uj (yj)

)
= Cuj . (4.95)
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Thus, the optimal expression for µuj is given as

µ∗
uj
(uj) = Cuj

√
|K̂−1

uj |/(2π)M exp
(
−0.5(uj − m̂uj (yj))

T K̂−1
uj

(uj − m̂uj (yj))
)
. (4.96)

Finally, Cuj
is chosen such that maxuj

µ∗
uj
(uj) = 1. This results in

µ∗
uj
(uj) = exp

(
−0.5(uj − m̂uj (yj))

T K̂−1
uj

(uj − m̂uj
(yj))

)
. (4.97)

Thus, ⟨uj⟩µ∗
uj

= m̂uj
(yj), and using (4.90), we get

⟨uj⟩µ∗
uj

= βK̂uj
(Kaa)

−1(Kxa)
Tyj . (4.98)

It follows from (4.89) and (4.90) that

K̂−1
uj
− (Kaa)

−1 = β(Kaa)
−1KT

xaKxa(Kaa)
−1 + β

Tr(Kxx)− Tr((Kaa)
−1KT

xaKxa)

ν +M − 2
(Kaa)

−1 (4.99)

K̂−1
uj

m̂uj
(yj) = β(Kaa)

−1(Kxa)
Tyj . (4.100)

Using (4.99) and (4.100) in (1.39), we have

log(µyj ;uj
(ỹj)) = −0.5β∥ỹj∥2 + β(uj)

T (Kaa)
−1(Kxa)

T ỹj

−0.5β(uj)T
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−1 +
Tr(Kxx)− Tr((Kaa)

−1KT
xaKxa)

ν +M − 2
(Kaa)

−1

}
uj .

Thus,
〈
log(µyj ;uj

(ỹj))
〉
µ∗
uj

is given as

〈
log(µyj ;uj

(ỹj))
〉
µ∗
uj

= −0.5β∥ỹj∥2 + β
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)T
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+

Tr(Kxx)− Tr((Kaa)
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ν +M − 2
(Kaa)

−1K̂uj

)
. (4.101)

The data-model (1.40) using (4.101) becomes as

µyj
(ỹj) ∝ exp

(
−0.5β∥ỹj∥2 + β

(
m̂uj

(yj)
)T

(Kaa)
−1(Kxa)
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− 0.5β
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−1KT
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ν +M − 2
(Kaa)

−1K̂uj

))
. (4.102)

Thus, (1.44) follows.

4.3 Membership-Mapping Output Estimation
Using (1.34) and (1.35), we have

⟨(fj)i⟩µfj ;uj
= (Kxa(Kaa)

−1uj)i (4.103)

= G(xi)(Kaa)
−1uj . (4.104)

Thus,

F̂j(xi) = G(xi)(Kaa)
−1 ⟨uj⟩µ∗

uj

. (4.105)

Using (4.98) in (4.105), we have

F̂j(xi) = β
(
G(xi)

)
(Kaa)

−1K̂uj (Kaa)
−1(Kxa)

Tyj . (4.106)

Substituting K̂uj
from (4.89) in (4.106), we get (1.48).
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