

Project no. 826278

SERUMS

Research & Innovation Action (RIA)

SECURING MEDICAL DATA IN SMART-PATIENT HEALTHCARE SYSTEMS

Report on Final User Authentication System

D5.4

Due date of deliverable: 30th April 2022

Start date of project: 1st January 2019

Type: Deliverable

WP number: WP5

Responsible Institution: UCY

Editor and editor’s address: Marios Belk (belk@cs.ucy.ac.cy)

Partners Contributing: UCL, SOPRA, IBM, ZMC, FCRB

Reviewers:

Matthew Banton (USTAN)

Thais Webber (USTAN)

Version 1.0

Ref. Ares(2022)3350980 - 30/04/2022

2

Project co-funded by the European Commission within the Horizon H2020 Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

3

Release History

Release No. Date Author(s) Release Description/Changes made

V0.1
01/11/2021 Marios Belk (UCY),

Andreas Pitsillides (UCY)

Defined TOC and added initial Executive

Summary

V0.2
01/11/2021 Marios Belk (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Added final general architecture and

extended description on use-case

scenarios

V0.3
12/12/2021 Marios Belk (UCY),

Christos Fidas (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY)

Added description of new APIs

V0.4
15/02/2022 Elias Athanasopoulos (UCY),

Argyris Constantinides (UCY)

Added credential hardening mechanism

V0.5
07/03/2022 Argyris Constantinides (UCY) Added new front-end designs

Added description on password strength

meter

Added description on image analysis tool

V0.6
21/04/2022 Eduard Baranov (UCL) Added the verification of the

authentication properties

V0.7
24/04/2022 Marios Belk (UCY),

Argyris Constantinides (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Beta version of the deliverable for internal

review

V0.8
28/04/2022 Matthew Banton (USTAN)

Thais Webber (USTAN)

Version after partners’ comments

V0.9
29/04/2022 Marios Belk (UCY),

Argyris Constantinides (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Pre-final version for final check

V1.0
29/04/2022 Marios Belk (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Release candidate

4

SERUMS Consortium

Partner 1 University of St Andrews

Contact Person Name: Juliana Bowles

Email: jkfb@st-andrews.ac.uk

Partner 2 Zuyderland Medisch Centrum

Contact Person Name: Larissa Haen-Jansen

Email: la.jansen@zuyderland.nl

Partner 3 Accenture B.V.

Contact Person Name: Bram Elshof

Email: bram.elshof@accenture.com

Partner 4 IBM Israel Science & Technology Ltd.

Contact Person Name: Michael Vinov

Email: vinov@il.ibm.com

Partner 5 Sopra-Steria

Contact Person Name: Andre Vermeulen

Email: andreas.vermeulen@soprasteria.com

Partner 6 Université Catholique de Louvain

Contact Person Name: Axel Legay

Email: axel.legay@uclouvain.be

Partner 7 Software Competence Centre Hagenberg

Contact Person Name: Michael Rossbory

Email: michael.rossbory@scch.at

Partner 8 University of Cyprus

Contact Person Andreas Pitsillides

Email: andreas.pitsillides@ucy.ac.cy

Partner 9 Fundació Clínic per a la Recerca Biomèdica

Contact Person Name: Santiago Iriso

Email: siriso@clinic.cat

Partner 10 University of Dundee

Contact Person Name: Vladimir Janjic

Email: vjanjic001@dundee.ac.uk

mailto:jkfb@st-andrews.ac.uk
mailto:la.jansen@zuyderland.nl
mailto:bram.elshof@accenture.com
mailto:vinov@il.ibm.com
mailto:andreas.vermeulen@soprasteria.com
mailto:axel.legay@uclouvain.be
mailto:michael.rossbory@scch.at
mailto:andreas.pitsillides@ucy.ac.cy
mailto:siriso@clinic.cat
mailto:vjanjic001@dundee.ac.uk

5

Table of Contents

EXECUTIVE SUMMARY ... 8

1 INTRODUCTION ... 9

1.1 ROLE OF THE DELIVERABLE ... 9
1.2 RELATIONSHIP TO OTHER SERUMS DELIVERABLES .. 9
1.3 STRUCTURE OF THIS DOCUMENT .. 9

2 A FLEXIBLE AND PERSONALIZED LOCIMETRIC USER AUTHENTICATION

PARADIGM IN HEALTHCARE ... 10

2.1 RESEARCH MOTIVATION .. 10
2.2 CONCEPTUAL DESIGN BASED ON THE DUAL CODING THEORY .. 11
2.3 FLEXPASS AUTHENTICATION PARADIGM .. 12

3 GENERAL ARCHITECTURE OF THE USER AUTHENTICATION SYSTEM 13

3.1 BACKEND USER AUTHENTICATION SYSTEM .. 14
3.2 FRONT-END WEB-BASED GRAPHICAL AND TEXTUAL PASSWORD SYSTEM .. 14
3.3 MULTI-FACTOR AUTHENTICATION SYSTEM ... 15

4 CREDENTIAL HARDENING ... 16

4.1 IMPLEMENTATION .. 16
4.2 STORING TEXTUAL AND GRAPHICAL PASSWORDS .. 20
4.3 PASSWORD STRENGTH METER .. 23
4.4 INTELLIGENT IMAGE ANALYSIS FOR QUANTIFICATION OF GRAPHICAL PASSWORD STRENGTH 25

5 USE-CASE SCENARIOS .. 27

5.1 ADMINISTRATOR LOGIN .. 27
5.2 ADMINISTRATOR CREATES AND ACTIVATES A USER ACCOUNT... 28
5.3 ADMINISTRATOR SENDS AN ACTIVATION CODE TO USER FOR ACCOUNT VERIFICATION 28
5.4 ADMINISTRATOR SENDS A RESET CODE TO USER FOR ACCOUNT RESET ... 29
5.5 END-USER ACTIVATES ACCOUNT .. 30
5.6 CREATION OF THE GRAPHICAL AND TEXTUAL PASSWORD ... 31
5.7 ENABLE TWO-FACTOR AUTHENTICATION TYPE AND PAIR MOBILE DEVICE ... 33
5.8 TWO-FACTOR AUTHENTICATION LOGIN USING THE MOBILE APPLICATION ... 34
5.9 UNPAIR MOBILE DEVICE FROM TWO-FACTOR AUTHENTICATION ... 36

6 VERIFICATION OF THE AUTHENTICATION SYSTEM ... 37

6.1 STATISTICAL MODEL CHECKING ... 37
6.2 PROPERTIES VERIFICATION ... 44
6.3 FUZZING .. 45

6

6.4 FUZZING CHECKS ... 47

7 IMPLICATIONS ... 53

7.1 FLEXPASS APPLICABILITY IN THE HEALTHCARE DOMAIN ... 53
7.2 FLEXPASS PERSONALIZATION WORKFLOW AND RECOMMENDATION RULES ... 54

8 CONCLUSIONS .. 56

REFERENCES ... 58

ABBREVIATIONS ... 61

APPENDIX A – CONTRIBUTIONS TO RESEARCH PUBLICATIONS BASED ON

ACTIVITIES WITHIN WORK PACKAGE 5 .. 62

APPENDIX B – PROTOTYPE DESIGN OF THE USER INTERFACES 64

UI OF THE FLEXPASS HOMEPAGE AND DEMONSTRATION PAGE ... 64
UI OF THE SYSTEM ADMINISTRATOR’S PAGE ... 65
UI OF THE USER ACCOUNT REGISTRATION PAGE .. 67
UI OF THE GRAPHICAL PASSWORD CREATION PAGE .. 68
UI OF THE TEXTUAL PASSWORD CREATION PAGE ... 69
UI OF THE TWO-FACTOR AUTHENTICATION ACTIVATION PAGE .. 69
UI OF THE USER LOGIN PAGE .. 70
UI OF THE TWO-FACTOR AUTHENTICATION LOGIN PAGE ... 72
UI OF THE MOBILE APPLICATION FOR TWO-FACTOR AUTHENTICATION ... 74

APPENDIX C – RESTFUL APPLICATION PROGRAMMING INTERFACE 81

CREATE ADMIN API TOKEN .. 81
REGISTER SERUMS USER .. 82
CHECK USERNAME ... 82
SET GRAPHICAL PASSWORD .. 83
RETRIEVE GRAPHICAL INFO ... 84
CREATE JWT ... 85
SET GRAPHICAL INFO .. 86
SET PASSPHRASE .. 87
SET SECOND FACTOR... 88
CHECK PASSPHRASE SET .. 89
REFRESH JWT ... 89
CHECK SECOND FACTOR SET ... 90
STORE GRAPHICAL LOGIN ATTEMPT .. 91
STORE PASSPHRASE LOGIN ATTEMPT .. 92
REQUEST DEVICE ENROLL ... 93
POLL ENROLL STATUS .. 94
CHECK DEVICE ENROLLED ... 95
ENROLL DEVICE ... 96

7

MAP FCM TO DEVICE ... 97
SUBMIT TOTP .. 98
SEND PUSH NOTIFICATION ... 99
POLL AUTH PUSH STATUS .. 100
TWO FACTOR RESPONSE .. 101
VERIFY JWT ... 101
CHECK RESET PASSWORD ... 102
MAP USER INFO .. 103
POLL GRAPHICAL STATUS ... 104
REMOVE SECOND FACTOR .. 104
REQUEST ACCOUNT VERIFICATION ... 105
REQUEST RESET VERIFICATION .. 106
RETRIEVE ID INFO .. 106
RETRIEVE USER INFO ... 107

APPENDIX D – DATABASE DESIGN (ENTITY-RELATIONSHIP DIAGRAM) 109

8

Executive Summary

Securing Medical Data in Smart Patient-Centric Healthcare Systems (Serums) is a research project

supported by the European Commission (EC) under the Horizon 2020 program. This is the fourth and

final deliverable of Work Package 5: “Authentication and Trust”. The leader of this work package is

UCY, with involvement from the following partners: UCL, SOPRA, IBM, ZMC, FCRB. The

objective of this work package is focused on designing and developing a user-centric authentication

system aiming to deliver a secure, personalized and usable authentication mechanism to each user’s

preference and interaction device, in order to preserve security and improve usability. The primary

goals are to: i) provide high levels of security to confirm the identity of each user and accordingly

authorize access to certain parts of personal and/or medical data in the system; and ii) improve the

usability levels of the user authentication mechanisms by increasing memorability of selected secrets

and task execution efficiency and effectiveness.

This deliverable, entitled “D5.4. Report on Final User Authentication System” reports the

implementation and verification of the final user authentication system. For the implementation of the

Serums’ user authentication system, a User-Centered Design methodology has been adopted for

developing and finalizing the user authentication scheme through multiple iterations (three prototypes

of the system have been released throughout the course of the project; initial, refined, final software)

that will be used for evaluation studies. This deliverable reports on the final software of the user

authentication scheme.

Given that the outcome of this work package is a result of an iterative development process that

refined the final Serums user authentication system throughout the course of the Serums project, for

completeness, we include existing stable designs, modules, data-flow diagrams, scenarios, endpoints,

and mechanisms from previous deliverables of this work package (Deliverable 5.2; Deliverable 5.3).

9

1 Introduction

1.1 Role of the Deliverable

The role of this deliverable is to report the design and development of the final software of the user

authentication scheme. Specifically, it reports: i) the improved and final user authentication paradigm

based on a novel retrospective and flexible approach in graphical and textual passwords; ii) the final

architecture of the user authentication scheme; iii) the architectural design and development details of

the credential hardening mechanism; iv) the sequence diagrams of the final authentication use-case

scenarios; v) the description of the final Application Programming Interface (API) and database

design of the user authentication scheme; vi) the final front-end design of the user interfaces in the

authentication system; and vii) final results of the verification of the user authentication system. The

outcome of the user authentication system constituted the basis for the evaluation of the third and final

Proof of Concept (PoC3) of Serums.

1.2 Relationship to Other Serums Deliverables

Deliverable Relation

D2.6: Final Software for Storage, Access,

Blockchain and Metadata Extraction for Smart

Patient Health Records

The user authentication API of D5.4 is used as input in the

final software of the Smart Patient Health Records

D4.3: Report on Final Data Fabrication and

Semantic-Preserving Encryption

Characteristics of the updated database schema of D5.4 is

used as input for data fabrication and semantic-preserving

encryption

D6.3: Report on Final Smart Health Centre

System Software

The outcome of D5.4 is used as input for the final version of

the integrated smart healthcare system software

D7.6: Report on Final Use Cases and

Evaluation

The final version of the user authentication scheme of D5.4

is used in the context of the evaluation studies of PoC3

D7.7: Report on Technical Roadmap for

Serums Technology

Outcomes of D5.4 is used as a basis for further elaborating

ideas and areas for improvement for the user authentication

system as part of the Serums technical roadmap

1.3 Structure of this Document

The rest of the document is structured as follows: Chapter 2 describes the Serums authentication

paradigm. Chapter 3 describes the general architecture of the user authentication system, including

details on new and extended modules, such as a password strength meter and semantic image analysis

tool. Chapter 4 provides implementation details of the credential hardening mechanism. Chapter 5

describes the sequence diagrams of the final user authentication scenarios. Chapter 6 describes the

results of the user authentication component verification. Chapter 7 discusses implications and the

applicability of the proposed authentication paradigm within healthcare environments. Chapter 8

concludes the deliverable including limitations of this research and future work. APPENDIX A lists

the research publications in which activities of this work package have contributed to. APPENDIX B

presents the final front-end design of the user authentication screens. APPENDIX C and D

respectively describe the final Application Programming Interface of the user authentication system,

and the design of the database.

10

2 A Flexible and Personalized Locimetric User Authentication

Paradigm in Healthcare

In this section we describe the proposal of the user authentication method, coined FlexPass, which is

based on a novel “Single-Secret Two Reflections” (SS2R) authentication paradigm. We first provide

details on the underlying theory and conceptual design of the approach.

2.1 Research Motivation

Healthcare organizations still rely on traditional knowledge-based authentication approaches, and

specifically, on textual passwords and/or location-aware approaches (e.g., Radio Frequency

Identification - RFID). This is based on several reasons, i.e., due to increased implementation and

maintenance costs, due to immaturity of new authentication approaches, as well as known security

and privacy issues of new user authentication paradigms (e.g., biometrics) (Fidas et al., 2021), which

negatively affect wide adoption of such technologies (Mason et al., 2020). Simultaneously, healthcare

organizations’ experts are aware that textual passwords negatively affect usability and security aspects

due to complex policies, and therefore seek for novel and easy-to-adapt knowledge-based user

authentication approaches as alternative solutions in order to avoid affecting the users’ familiarity and

existing practice.

Furthermore, the literature reveals that: a) a plethora of user authentication methods (knowledge-,

token-, biometric-based) have been introduced for healthcare environments, each one having its own

strengths and weaknesses with regards to security, privacy and user experience; b) it is estimated that

knowledge-based authentication mechanisms will continue to prevail in the next decades (Leon and

Boštjan, 2019), even in combination with other approaches (e.g., token-based) or as fallback

mechanisms, hence, new approaches need to partially rely on existing textual password approaches in

order to support the technology transition of users; c) user authentication in healthcare environments

entails a mixture of unique constraints and challenges related to the location and context in which

interaction takes place (Constantinides et al., 2021; 2020; Eikey et al., 2015); and d) evidence has

shown that user preference and task performance varies depending on the user (e.g., age, abilities) and

the context of use (e.g., interaction device, screen size), suggesting that any specific solution might

not please everyone (Mare et al., 2016).

Bearing in mind that user authentication in healthcare environments is performed by users with

varying profiles, in different contexts of use and on multiple heterogeneous devices, this work

investigates whether end-users would benefit from a flexible and personalized user authentication

solution that would adapt and personalize different authentication mechanisms (graphical and textual)

depending on their context of interaction, aiming to achieve a viable balance between security and

usability. Our work is primarily driven by our vision to combine graphical and textual password

mechanisms based on a new “Single-Secret Two Reflections” (SS2R) user authentication paradigm,

which allows us to move from current generic “one-size-fits-all” authentication systems towards

flexible, user-adaptable and personalized authentication systems. The aim is to provide a viable and

flexible authentication solution, by following state-of-the-art practices in the healthcare domain, and

applicable within current healthcare organizations.

11

2.2 Conceptual Design based on the Dual Coding Theory

User Scenario: From Location-based Memories towards Location-aware Passwords. Consider a

scenario (Figure 1) in which a patient, Emma, visits her hospital for her weekly checkup at her

doctor. Emma drives through the entrance of the hospital and then parks her car. She further walks

from the car park through the hospital’s garden, enters the building and goes to the reception hall. She

then registers at the reception hall in which she confirms her appointment with her doctor. She is then

asked to wait for fifteen minutes until her appointment. During these fifteen minutes, Emma walks to

the hospital’s cafeteria and orders a coffee and croissant until her appointment. Emma completes the

checkup with her doctor, receives a prescription of medication and then leaves the hospital and drives

back home.

Figure 1. Use-case scenario of FlexPass.

During Emma’s visit at the hospital, she created several real-life memories within the hospital (e.g.,

walk through the garden, visit at the cafeteria, appointment with the doctor). Based on the dual coding

theory (Paivio, 2006; Sternberg, 2003), Emma encrypted a series of visual and verbal stimuli within

her long-term memory (Atkinson and Shiffrin, 1968; Baddeley, 1990), and more specifically with the

episodic, semantic and autobiographical memories (Tulving, 2002; Squire, 1992; Williams et al.,

2008), which entail information about certain events experienced in an individual’s lifetime and the

corresponding semantic information describing these events. Furthermore, according to the dual

coding theory, the human brain consists of a visual cognitive sub-system, which is utilized by the

human brain during processing, representation and recall of imagery information, as well as a verbal

cognitive sub-system, which is utilized by the human brain during processing, representation and

recall of verbal information (Paivio, 2006). For example, information such as the word “cappuccino”

is represented in the human mind as a visual representation of a cappuccino coffee cup, as well as the

word “cappuccino”. During recall, individuals retrieve and process both representations

simultaneously, or separately. Figure 2 depicts the underlying idea of FlexPass.

12

Figure 2. From location-based memories towards location-aware and flexible passwords.

2.3 FlexPass Authentication Paradigm

FlexPass aims to leverage on the dual coding theory based on a novel “Single-Secret Two

Reflections” authentication paradigm. This enables patients to create a single conceptual secret

leveraging upon their personal location-based memories they have built through their interactions in

certain locations within the hospitals, and further reflect the secret on a graphical and/or textual

password key. For creating the graphical password key, FlexPass presents location-aware images that

depict image content of a certain location of a hospital, in which the patient had prior interaction with.

In addition, FlexPass provides an additional option to the patient to create a textual password key that

may be then utilized interchangeably with the graphical password based on user’s preference. Our

solution intentionally includes a textual password as an option to avoid changing the current state-of-

the-art practice in the healthcare domain, and a method in which users are familiar with. Hence, we

anticipate that FlexPass will be more easily transferable from the current state-of-the-art towards the

new suggested approach, providing the option to users to switch to their preferred authentication type

(graphical or textual). Figure 3 illustrates the conceptual design of FlexPass.

Figure 3. Conceptual design of FlexPass.

13

Graphical Passwords. The graphical password mechanism is based on cued-recall graphical

authentication mechanisms (Biddle et al., 2012), which ask users to draw secret gestures on a

background image that acts as a cue. For its implementation, we follow design and development

guidelines of Microsoft’s Picture Gesture Authentication (PGA)TM mechanism (Johnson et al., 2014),

introduced in Windows 8 (also available in most recent versions, e.g., Microsoft Windows 10 and 11),

which allows users to draw three types of gestures on the background image: taps (clicks), lines and

circles. Free line gestures are automatically converted into one of the three allowed gestures.

Textual Passwords. FlexPass follows state-of-the-art security metrics and authentication policies

with regards to the implementation of textual passwords (Komanduri et al., 2011; Burr et al., 2006;

Belk et al., 2019). The textual password keys rely on a basic 16-character password policy, allowing

the creation of dictionary words with no composition requirements, which is more usable and as

secure as traditional complex 8-character policies (Komanduri et al., 2011) (the National Institute of

Standards and Technology (NIST) predicts that both policies generate 30 bits of security entropy

(Burr et al., 2006)).

In this context, FlexPass allows users to create a secret graphical and/or a textual password. During

graphical password composition, FlexPass deploys images depicting popular sceneries of the hospital

(e.g., garden, reception hall, cafeteria, etc.). The user is asked to select an image of her preference and

then create a graphical password by drawing secret gestures on certain regions of the image based on

the experience she had with the depicted content in the image. For example, based on the

aforementioned user scenario, a conceptual secret derived from Emma’s episodic memory and

experiences at the hospital would be: “the cappuccino I drank at the hospital”. Emma would reflect

this secret on the graphical password by selecting for example a coffee cup and the exact table she sat

for having her coffee in the hospital’s cafeteria. As a next step, FlexPass also allows users to create a

textual password by asking the patient to reflect the conceptual-based graphical secret as a textual

representation by articulating the secret, e.g., the textual version of the secret would be

“CappuccinoIDrankInTheHospitalsCafeteria”.

Hence, the “Single-Secret Two Reflections” paradigm extends existing works in knowledge-based

user authentication based on the dual coding theory aiming to: a) enhance security by enabling users

to select regions on an image that are familiar to the users and not to the attacker; b) to enhance

memorability through ownership, and prior experience and knowledge of each single user; and c) to

support user authentication adaptability since users can choose their preferred way to login based on

their needs and context of use. For example, users that are on the move might prefer to login through

touch-based graphical password input on the tablet device vs. users that are in the office might prefer

to login through a textual password input on the conventional desktop computer.

3 General Architecture of the User Authentication System

In this section, we present the architectural design of the developed user authentication system.

Figure 4 illustrates the high-level architectural design of the final user authentication system, which

also includes the password-hardening component (please see Section 4). The user authentication

system is hosted at the University of St. Andrews premises on a CentOS Linux version 7 machine

with 47GB of RAM and 2T of disk space.

14

3.1 Backend user authentication system

The backend of the user authentication system is developed in Python 3.7.4 using the Django REST

Web development framework, which is a powerful and flexible toolkit for building Web Application

Programming Interfaces (APIs) in Python. The core component of the backend is the server-side Web

API, which is a programmatic interface consisting of publicly exposed endpoints to a defined request–

response message system, expressed in JavaScript Object Notation (JSON) format and exposed via

the Web by means of a Web server that is based on the Hypertext Transfer Protocol (HTTP).

For the deployment of the Django application, we use a modified Apache HTTP Server with an

extension of the mod_ssl module for credential hardening, and mod_wsgi, which is an Apache module

that can host any Python Web Server Gateway Interface application. For certain heavy and time-

consuming tasks, such as, storing of graphical passwords, ideally, we would like the request and

response cycle to be fast, otherwise we would leave the user waiting for rather too long. Even worse,

the Web server can only serve a certain number of users at a time. So, if this process is slow, it can

limit the number of pages our application can serve at a time. To solve this problem, Celery is used,

which is an asynchronous task queue based on distributed message passing. Celery is not used

through the whole project, but only for specific tasks that are time-consuming. The idea here is to

respond to the user as quickly as possible, pass the time-consuming tasks to the queue so to be

executed in the background, and always keep the server ready to respond to new requests. Celery

additionally requires an external solution for sending and receiving messages. For this purpose,

RabbitMQ is used, which is an open-source message-broker software.

For the storage of the data, PostgreSQL is used, which is an open-source Relational Database

Management System commonly used within Django applications. Finally, the whole user

authentication system is packaged and runs as a lightweight, portable, and self-sufficient container

through Docker (version: 19.03.13, API version: 1.40), which is a set of software products that use

virtualization at the operating system level to deliver software in packages called containers.

3.2 Front-end Web-based graphical and textual password system

The FlexPass front-end is developed using the Django’s template language, which contains variables

that get replaced with values when the template file, e.g., Hypertext Mark-up Language (HTML) file

is rendered, and tags that control the logic of the template.

HTML is the primary mark-up language for the creation of Webpages on the World Wide Web. It

provides a means to describe the structure of text-based information in a document through annotation

of certain text as headings, paragraphs, etc., and to supplement that text with interactive forms,

embedded images, and other objects. The main purpose of HTML is to display and format content,

allowing very limited interaction with the Webpage. HTML also describes to some extent the

semantics of a document and can include embedded scripting language code for manipulating at run-

time the HTML elements of a document and the behavior of the Webpage. FlexPass front-end utilizes

the latest version of HTML5, given its extended capabilities and to conform to the latest standards of

today’s HTML Web browsers.

To provide styling to the HTML elements, Cascade Style Sheets (CSS) are utilized, which provide a

means for defining how HTML elements should be displayed. FlexPass front-end utilizes the latest

version of CSS3 to take advantage of current state-of-the-art styling features and improvements for

15

enhancing the Web presentation capabilities, as well as to conform to the latest World Wide Web

Consortium design standards.

Today’s Web-sites typically combine HTML, CSS, and client-side scripting for creating interactive

pages. The most applied client-side scripting language on the World Wide Web (WWW) currently is

JavaScript. Hence, FlexPass front-end utilizes JavaScript for the following purposes: i) for allowing

users to create graphical passwords in an HTML canvas element that loads the background image; ii)

for handling users’ interactions (e.g., time to create password, time to login); and iii) for

communicating and exchanging data with the FlexPass back-end asynchronously without reloading

the Webpage through Asynchronous JavaScript and XML.

The front-end designs of the Web application are available in three languages: English, Dutch, and

Catalan.

3.3 Multi-factor authentication system

As an additional layer for security, we have implemented a smartphone application, available in both

Android and iOS, using Flutter (https://flutter.dev). We coined the smartphone application as Serums

Authenticator. APPENDIX B illustrates all the front-end user interface designs of the smartphone

application. Serums Authenticator follows state-of-the-art practices with regards to multi-factor

authentication solutions, i.e., users can use their smartphone device as a second factor for

authentication in which they can approve a successful login either through approval of a push

notification and/or a time-based one-time passcode (TOTP). It implements the following

functionalities: i) users initially pair their device with their Serums account using a QR code or a six-

digit code; ii) users may use the TOTP displayed on the end-user’s smartphone mobile application

that is automatically reset every 30 seconds, aiming to approve their login; iii) users may also approve

their login through an easy-to-use push notification; and iv) users have the option to remove the

second factor for authentication if they wish.

The front-end designs of the smartphone application are available in three languages: English, Dutch,

and Catalan.

Figure 4. High-level architectural design and technologies used.

16

4 Credential Hardening

In this section, we present how Serums employs additional countermeasures in order to defend against

attacks that are based on cracking offline leaked credentials. We further provide details on a password

strength meter for assisting users in creating stronger passwords, and an intelligent image analysis

tool for further assisting the quantification of graphical password strength.

4.1 Implementation

Recall that Serums secures a text-based password using a Message Authentication Code (MAC),

instead of a cryptographic hash function (please refer to Serums Deliverables D5.2 and D5.3). In

particular, Hash Message Authentication Code (HMAC) is used as provided by OpenSSL (Open

Secure Sockets Layer); the aforementioned implementation uses internally SHA-256 (Secure Hash

Algorithm) for hashing. The HMAC uses bits from the private key of the server to compute the

cryptographic hash.

We have implemented the credential hardening mechanism by enhancing an Apache module,

therefore it can be instantly enabled to all Web applications that run over Apache. Alternatively, it is

straightforward to realize credential hardening to other Web infrastructures, so long as they support

TLS connections. We now expand on all Apache-based modifications and then on all Web application

modifications required for deploying credential hardening. Credential hardening builds on the existing

mod_ssl module by adding a new hook. This can be done by modifying mod_ssl.c, where all the

hooks needed to the Apache for serving TLS connections are set. Our hook is set as

APR_HOOK_FIRST and thus it is executed as soon as possible in the request pipeline. We depict

below the code excerpt where the hook is established.

#include "hasher.h"

static void ssl_register_hooks(apr_pool_t *p){

 ap_hook_handler(hasher_handler, NULL, NULL, APR_HOOK_FIRST);

}

Source Code. SSL register hook.

Moreover, we depict the core code of the entire credential hardening mechanism. Here, we reference

lines of code for each of the basic steps credential hardening does, but reading the code is not

necessary to understand the mechanics. The main handler of credential hardening does the following:

1. Declines any requests that are not local and that do not have arguments (i.e., no password);

(lines 2-5)

2. Checks that the connection uses TLS, and drops any non-encrypted one; (lines 9-10)

3. Reads the private key –used for TLS– from the SSL context and stores it to a buffer; if the

private key is not available declines the request; (lines 12-19)

4. Decodes the argument (i.e., password) from the request’s URL; if the plain password is not

correctly encoded, the request is declined; (lines 24-28)

5. Calls the HMAC function of the OpenSSL library with parameters: (a) the cryptographic

hashing function (SHA256); (b) the private key as the key for the computed HMAC; and (c)

the password to be hashed; (lines 30-34)

6. Returns the keyed digest to the client in the form of an encrypted HTTP response. (lines 35-

37)

17

1 int hasher_handler(request_rec *r) {

2 if (strcmp(r->uri,"/hmac-service")==0 && r->args!=NULL &&

3 strcmp(ap_get_remote_host(r->connection, NULL,

4 REMOTE_NAME, NULL),

5 "127.0.0.1")==0) {

6 char * key; server_rec *s = r->server;

7 SSLSrvConfigRec *sc = mySrvConfig(s);

8 modssl_ctx_t *server = sc->server;

9 if (server == NULL || server->ssl_ctx == NULL)

10 return DECLINED;

11 else {

12 EVP_PKEY * evp = SSL_CTX_get0_privatekey(server->ssl_ctx);

13 if (evp) {

14 size_t len = PRIVATE_KEY_SIZE; key = malloc(len);

15 FILE *stringFile = fmemopen(key, len, "w");

16 PEM_write_PrivateKey(stringFile, evp, NULL,

17 NULL, 0, 0, NULL);

18 fclose(stringFile);

19 } else return DECLINED;

20 }

21 char * plainPassword = getPasswordFromArgs(r->args);

22 int rounds = getRoundsFromArgs(r->args);

23 // wrong password format

24 char * dec=malloc(sizeof(char)*strlen(plainPassword)+1);

25 if (plainPassword==NULL || decode(plainPassword, dec)<0){

26 free(dec); free(key);

27 return DECLINED;

28 }

29 int rlen,i;

30 unsigned char * hashed = HMAC(EVP_sha256(),

31 key, strlen(key),

32 dec, strlen(dec), NULL, &rlen);

33 for (i=1;i<rounds;i++)

34 h = HMAC(EVP_sha256(), key, strlen(key), h, rlen, NULL, &rlen);

35 for (i = 0; i < rlen; i++) {

36 ap_rprintf(r, "%02X", h[i]);

37 }

38 free(key); free(dec); free(plainPassword); return OK;

39 }

40 return DECLINED;

41 }

Source Code. Implementation of credential hardening.

18

To integrate the modssl_hmac library into the containerized Django application, we had to build and

install from source the following: i) Apache HTTP server; ii) PHP; and iii) mod_wsgi for configuring

Django to run based on the modified Apache version that includes the credential hardening

component. Next, we present the script that builds and installs the aforementioned technologies, as

well as configures the Django Web application of the user authentication system.

#!/bin/bash

set -e

touch /var/modssl/.cert;

echo "Downloading and installing apache";

Install apache with mod_ssl_hmac

if [[-e /var/modssl/.cert]] && [[! -e /var/modssl/.apache]]; then

 cd /var/modssl;

 rm -rf /var/modssl/httpd ;

 if [[! -d /var/modssl/httpd]]; then

 git clone --depth 1 --branch 2.4.41 https://github.com/apache/httpd.git;

 sed -i '/#include "mod_ssl.h"/a #include "hasher.h"'

/var/modssl/httpd/modules/ssl/mod_ssl.c;

 sed -i '/ssl_io_filter_register(p);/a ap_hook_handler(hasher_handler, NULL, NULL,

APR_HOOK_FIRST);' /var/modssl/httpd/modules/ssl/mod_ssl.c;

 sed -i '/mod_ssl.lo dnl/a hasher.lo dnl/' /var/modssl/httpd/modules/ssl/config.m4;

 cp /var/modssl/lib/hasher.c /var/modssl/httpd/modules/ssl/hasher.c;

 cp /var/modssl/lib/hasher.h /var/modssl/httpd/modules/ssl/hasher.h;

 cd /var/modssl/httpd;

 svn co http://svn.apache.org/repos/asf/apr/apr/trunk srclib/apr;

 ./buildconf;

 chmod +x configure;

 ./configure --prefix=/usr/local/apache2;

 fi

 cp /var/modssl/lib/hasher.c /var/modssl/httpd/modules/ssl/hasher.c;

 cp /var/modssl/lib/hasher.h /var/modssl/httpd/modules/ssl/hasher.h;

 cd /var/modssl/httpd;

 make clean >> /var/modssl/.logs;

 make >> /var/modssl/.logs;

 make install >> /var/modssl/.logs;

 touch /var/modssl/.apache;

fi

echo "Done apache";

echo "Downloading and installing php";

Install php

19

if [[-e /var/modssl/.apache]] && [[! -e /var/modssl/.php]]; then

 cd /var/modssl/;

 if [[! -d /var/modssl/php-7.2.16]]; then

 wget -O php.tar.gz https://github.com/php/web-php-distributions/raw/master/php-

7.2.16.tar.gz >> /var/modssl/.logs;

 tar -zxvf php.tar.gz;

 rm php.tar.gz;

 fi

 cd /var/modssl/php-7.2.16;

 ./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-curl --with-mysqli --enable-

mbstring --with-gd --with-jpeg-dir=/usr/lib64 --enable-opcache >> /var/modssl/.logs;

 make clean >> /var/modssl/.logs;

 make >> /var/modssl/.logs;

 make install >> /var/modssl/.logs;

 cd /var/modssl/;

 touch /var/modssl/.php;

fi

echo "Done php";

echo "Downloading and installing mod_wsgi for Django";

if [[! -e /var/modssl/.mod_wsgi]]; then

 cd /var/modssl/;

 if [[! -d /var/modssl/mod_wsgi-4.7.1]]; then

 wget https://github.com/GrahamDumpleton/mod_wsgi/archive/4.7.1.tar.gz >>

/var/modssl/.logs;

 tar xvfz 4.7.1.tar.gz;

 rm 4.7.1.tar.gz;

 fi

 cd mod_wsgi-4.7.1/;

 ./configure --with-apxs=/usr/local/apache2/bin/apxs

 make >> /var/modssl/.logs;

 make install >> /var/modssl/.logs;

 cd /var/modssl/;

 touch /var/modssl/.mod_wsgi;

fi

echo "Done mod_wsgi";

echo "Applying apache configuration files";

Apply configuration files

if [[-e /var/modssl/.php]] && [[! -e /var/modssl/.conf]]; then

 cp /var/modssl/conf/httpd.conf /usr/local/apache2/conf/httpd.conf

 cp /var/modssl/conf/httpd-ssl.conf /usr/local/apache2/conf/extra/httpd-ssl.conf

 touch /var/modssl/.conf;

fi

20

if [[-e /var/modssl/.started]]; then

 rm /var/modssl/.started;

fi

Start apache

echo "Start apache";

if [[-e /var/modssl/.conf]]; then

 /usr/local/apache2/bin/apachectl start;

 touch /var/modssl/.started;

fi

echo "Apache started";

echo "Container is ready";

cat;

Source Code. Integration of credential hardening.

4.2 Storing Textual and Graphical Passwords

Regarding the storage of the textual password, we initiate a request to the credential hardening

component, which converts the textual password string into a HMAC using the TLS key. The final

HMAC’ed textual password string is stored in the database.

With regards to the graphical password system, three types of gestures are allowed: taps (clicks), lines

and circles. Free line gestures are not permitted; hence, they are automatically converted into one of

the three permitted gestures.

To process the gestures, the mechanism creates a grid of the image containing 100 squares (segments)

on the longest side1, and then divides the shortest side by the same scale. Rounding is not applied to

any decimal segments and the mechanism allows 0.25 segments size overflow at the rightmost side of

the image. The approach of creating a grid of squares allows for storing the gestures based on their

segment position on the grid rather than the coordinates in pixels (Figure 5). The following data is

stored: for taps, the (x, y) coordinates of a point, for lines the (x, y) coordinates of the starting and

ending point, and for circles the (x, y) coordinates of the center, the radius and the directionality

(clockwise/counterclockwise).

The mechanism allows for a tolerance distance in terms of the coordinates on the grid (36 segments

around each initial selected segment are acceptable1 (Katsini et al., 2018), thus, building a circle of 3

segments radius). This tolerance allows better accuracy of users’ selections during login. However,

there is no tolerance regarding ordering, type, directionality of the gestures. During the login, the

mechanism compares the entered password with the stored one and login will be considered

successful if (a) all three gestures (ordering, type, and directionality) match with the stored ones; and

(b) the tolerance distance between the entered gestures and the stored ones fit in the predefined

tolerance threshold.

1 https://docs.microsoft.com/en-us/archive/blogs/b8/signing-in-with-a-picture-password

21

Figure 5. The graphical password mechanism creates a grid of the image containing 100 squares

(segments) on the longest side, and then divides the shortest side by the same scale.

Although the approach adopted by Microsoft’s PGATM for storing the graphical passwords remains

undisclosed (Zhao et al., 2013), we follow state-of-the-art research on PGA for the scenario in which

all the passwords that fall into the vicinity (as defined by the threshold) of chosen passwords are

stored in a file with hashes on the server (Zhao et al., 2013). To be able to calculate the hash of the

graphical password and store it in the file, we first need to represent the graphical password as a

string. To do so, we use the following string representation for each gesture type:

Tap: "#N|T|x1,y1"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

T: The letter “T” refers to the gesture type tap (click).

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates.

x1: The x coordinate of the tap inside the image grid.

y1: The y coordinate of the tap inside the image grid.

Circle: "#N|C|x1,y1,r,c"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

C: The letter “C” refers to the gesture type circle.

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates,

radius, and directionality.

x1: The x coordinate of the circle’s center inside the image grid.

y1: The y coordinate of the circle’s center inside the image grid.

22

r: The radius of the circle.

c: Boolean value that denotes whether the directionality is clockwise (True) or counter-clockwise

(False)

Line: "#N|C|x1,y1,x2,y2"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

L: The letter “L” refers to the gesture type line.

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates

and (x2, y2) coordinates.

x1: The x coordinate of the line’s starting point inside the image grid.

y1: The y coordinate of the line’s starting point inside the image grid.

x2: The x coordinate of the line’s ending point inside the image grid.

y2: The y coordinate of the line’s ending point inside the image grid.

Combinations based on the threshold. The final string representation of the graphical password is

the concatenation of the three strings, where each string refers to the corresponding gesture. Due to

the introduction of the tolerance, for each graphical password string we also compute all the possible

combinations that will match the initial graphical password string. After applying the tolerance to

each segment, we end up with the following combinations for each gesture type:

- Tap: A total of 4 combinations, which correspond to the tap’s (x, y) pairs of coordinates that

will match the initial graphical password string during the comparison.

- Circle: A total of 12 combinations (4 combinations for the center  3 combinations for the

radius), which correspond to the circle’s center (x, y) pairs of coordinates combined with 3

radii (initial, increased, decreased) that will match the initial graphical password string during

the comparison.

- Line: A total of 16 combinations (4 combinations for the line’s starting point  4

combinations for the line’s ending point), which correspond to the starting point’s (x, y) pairs

of coordinates combined with the ending point’s (x, y) pairs that will match the initial

graphical password string during the comparison.

Due to the differences in total combinations across gestures, and aiming to avoid revealing any

information about the gesture type, we take an extra step by generalizing to the most complex

combination, i.e., as in having 3 lines, which would yield 163 = 4096 combinations. Therefore, in case

of taps and circles, for the remaining combinations, we also generate dummy password string

combinations, so we always create the maximum number of 4096 combinations. To do so, we

generate the remaining dummy password strings as 50-character strings (Komanduri et al., 2011). The

50-character dummy password strings are generated by combining the following: i) a 32-character

lowercase hexadecimal string generated using Python’s uuid module (e.g., uuid4 function); and ii) a

23

18-character random string generated using Python’s secrets module (e.g., choice function, which

accepts as input a non-empty sequence consisting of ascii letters and digits, and returns a randomly-

chosen element). Finally, for each of the generated combination, we make a request to the credential

hardening component, which converts the password string into a Hash Message Authentication Code

using the TLS key. The final HMAC’ed graphical password string is stored in a file and contains all

the possible matching combinations for a particular user. The content of this file is used during the

login process, in which the input graphical password string is first converted to an HMAC via the

credential hardening component and is then compared to the HMACs contained in the file for

comparison. Below, we present an example of initiating a request to the credential hardening

component that generates the HMAC of all combinations of a graphical password.

def generate_graphical_password_hashes(password_data):

 ''' Generates all possible hash combinations that match the input password data.

 Returns:

 (list of str): A list that contains all the hashes

 '''

 final_combinations = []

 first_gesture_items = password_data[0]

 second_gesture_items = password_data[1]

 third_gesture_items = password_data[2]

 url = "https://127.0.0.1/hmac-service"

 for gesture_1 in first_gesture_items:

 for gesture_2 in second_gesture_items:

 for gesture_3 in third_gesture_items:

 password_string = gesture_1 + gesture_2 + gesture_3

 params = {

 'password': password_string

 }

 r = requests.get(url, params=params)

 final_combinations.append(r.text)

 return final_combinations

...

graphical_password_hashes = generate_graphical_password_hashes(password_data)

Source Code. Request to the credential hardening component that generates the HMAC of all

combinations of a graphical password.

4.3 Password Strength Meter

Aiming to assist users in creating stronger passwords, we have implemented a password strength

meter, which provides a run-time estimation about the strength of the user-created graphical password

and textual password. Figure 6 illustrates the password strength meter of the graphical user

authentication system.

24

Figure 6. Password strength meter of the graphical user authentication system.

For measuring the graphical password strength, we used a heuristic approach by considering state-of-

the-art knowledge on picture gesture authentication1. Taking into consideration that the tap (click) is

the least complex gesture, while the line is the more complex gesture, we set our complexity heuristic

as depicted in Table 1.

Table 1. Complexity heuristics based on combination of gestures, disregarding order.

Combination of gestures Complexity

3 taps 40%

3 circles 80%

3 lines 100%

Disregarding order

1 tap & 2 circles 50%

2 taps & 1 circle 50%

1 tap & 1 line & 1 circle 70%

2 taps & 1 line 70%

1 tap & 2 lines 70%

2 circles & 1 line 70%

2 lines & 1 circle 80%

Taking into consideration that the proximity of different gestures impacts the overall complexity of

the password (e.g., different gestures on the same (x, y) segment on the grid are less secure), we take

an extra step to either penalize (-20%) password combinations that include gestures that are in close

proximity (as defined by the threshold of a circle of 3 segments radius), or reward (+20%) password

combinations that do not include gestures in close proximity. The minimum and maximum value of

25

textual password complexity is 0% and 100% respectively. The higher the score, the more complex

the password is.

Furthermore, for measuring textual password complexity, we have implemented Dropbox’s zxcvbn

(Wheeler, 2016), which is a widely applied and realistic password strength estimator. zxcvbn applies

pattern matching and conservative estimation, recognizing and weighing 30,000 common passwords,

names, surnames according to US census data, popular English words from Wikipedia and television

and movies. Commonly used patterns by users are also considered, such as, dates, repeated characters,

sequential characters, keyboard patterns, etc. (https://github.com/dropbox/zxcvbn). The source code

below depicts an example of password strength estimation through zxcvbn.

function get_passphrase_strength_results(passphrase) {

var result = zxcvbn(passphrase, user_inputs=[]);

var crack_time_seconds = result.crack_times_seconds;

var crack_times_display = result.crack_times_display;

var res_obj = {};

res_obj.guesses = result.guesses;

res_obj.guesses_log10 = result.guesses_log10;

res_obj.online_throttling_100_per_hour=crack_time_seconds['online_throttling_100_per_hour'];

res_obj.online_no_throttling_10_per_second=crack_time_seconds['online_no_throttling_10_per_se

cond'];

res_obj.offline_slow_hashing_1e4_per_second=crack_time_seconds['offline_slow_hashing_1e4_per_

second'];

res_obj.offline_fast_hashing_1e10_per_second=crack_time_seconds['offline_fast_hashing_1e10_pe

r_second'];

res_obj.crack_times_display_online_throttling_100_per_hour=crack_times_display['online_thrott

ling_100_per_hour'];

res_obj.crack_times_display_online_no_throttling_10_per_second=crack_times_display['online_no

_throttling_10_per_second'];

res_obj.crack_times_display_offline_slow_hashing_1e4_per_second=crack_times_display['offline_

slow_hashing_1e4_per_second'];

res_obj.crack_times_display_offline_fast_hashing_1e10_per_second=crack_times_display['offline

_fast_hashing_1e10_per_second'];

res_obj.score = result.score;;

return res_obj;

}

res_obj = get_passphrase_strength_results(passphrase);

Source Code. Example of password strength estimation through zxcvbn.

4.4 Intelligent Image Analysis for Quantification of Graphical Password Strength

Aiming to further assist the quantification of graphical password strength, we have implemented an

image analysis service, which performs Artificial Intelligence-driven object detection and points of

interest detection on an image. Such knowledge can be then fed into the graphical password strength

estimator for calculating the graphical password strength based on whether users make selections on

certain regions of an image that attract their attention and might be leveraged by attackers during a

guessing attack.

26

The service allows service providers to upload their own images or fetch images from the Internet

through Google’s Custom Search API (https://developers.google.com/places/web-service/search) and

location-based search through Google’s Place Search API (https://developers.google.com/places/web-

service/search). The service implements state-of-the-art computer vision algorithms to run along with

the training dataset they wish to be used. The current prototype was developed in Python through the

Django Web framework. Specifically, for the detection of objects, we integrated state-of-the-art

object detection algorithms, such as, the Mask R-CNN trained on COCO (Tsung-Yi et al., 2014),

YOLOv3 trained on the Open Images dataset (Kuznetsova et al., 2020), and Faster R-CNN trained on

PASCAL VOC (Everingham et al., 2010) and Cityscapes (Cordts et al., 2016) datasets. Figure 7 and

Figure 8 respectively illustrate the front-end user interface in which the user may upload an image for

semantic analysis, and the results of an image analysis in which objects that are detected trough the

image analysis tool are visually annotated on the image.

Figure 7. Front-end user interface in which the user may upload an image for semantic analysis.

The image analysis tool has been designed to be extensible, by allowing easy adjustments to the

existing algorithms, as well as easy addition of new algorithms. The aforementioned algorithms are

implemented in Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). The pre-trained

weights of the models are stored on the server and are loaded in each request, so that the model can

predict the objects present in the image along with their respective locations and bounding boxes. The

interested reader may refer to Constantinides et al. (2021) for a comparative study among the

aforementioned computer vision algorithms for assisting users in graphical password composition.

Figure 8. Objects detected through the image analysis tool.

27

5 Use-case Scenarios

The final version of the user authentication system builds on the third version of the system. For the

tasks of the previous versions of the user authentication system, please refer to D5.2 - Software on the

Initial Verified User Authentication System (Serums Deliverable 5.2) and D5.3 - Software on the

Refined Verified User Authentication System (Serums Deliverable 5.3). The new tasks are the

following: i) administrator login; ii) administrator creates and activates a user account; iii) updated

activation page; iv) set two-factor authentication during registration; v) download mobile application

and enroll user device; and vi) two-factor authentication approval page. The following tasks from the

first version of the system remain the same: i) user-adaptable authentication; ii) request to reset secret;

and iii) reset secret. For completeness, we include existing stable use-case scenarios from previous

deliverables of this work package (Deliverable 5.2; Deliverable 5.3).

5.1 Administrator Login

The administrator login page aims to assure that an administrator2 (e.g., administrator from the end-

user organizations) has the right to access the Serums’ authentication administration page, which is

primarily used to create end-user (e.g., patient) accounts (Figure 9). In this phase, administrators

enter their credentials, which consist of a unique username, a secret Web-based key and their

organization. Then, the Authentication System validates the provided input details, leading to one of

the following cases: i) if the administrator does not exist in the Database, an error message is

communicated to the user interface with an informational message that the credentials are not correct;

and ii) if the credentials’ validation is successful, then an expiring API token is generated, and sent

back to the administrator’s user interface.

Figure 9. Administrator login sequence diagram.

2 To create system administrator accounts, we run a helper script that generates the accounts directly in the

Database. This is a special type of user that can enrol a user of any of the following types: hospital_admin;

medical_staff; and patient.

28

5.2 Administrator Creates and Activates a User Account

In this step, an administrator creates a new user account for an end-user (e.g., patient, doctor, etc.)

(Figure 10). In this phase, the user initially enters the account details of the end-user. Then, the

Authentication System checks the provided input details, leading to one of the following cases: i) if

the user does not exist in the Database, the provided input details are stored in the Database, and an

activation code is generated and sent to the Notification System. Then, an email including the

activation code is sent to the end-user and a success operation is returned to the administrator; ii) if

the user already exists in the Database, an unsuccessful operation is returned, along with a message

notifying the user that the provided user profile already exists.

Figure 10. End-user registration and account activation by administrator.

5.3 Administrator Sends an Activation Code to User for Account Verification

In this step, a system administrator can send an activation code to an end-user’s email (Figure 11).

Then, the Authentication System checks the provided input details (i.e., username), leading to one of

the following cases: i) if the user does not exist in the Database, an unsuccessful operation is returned,

along with a message notifying the system administrator that the provided user profile does not exist;

ii) if the user exists in the Database and his/her account is already activated, a successful operation is

returned, along with a message notifying the system administrator that the provided user profile is

already activated; and iii) if the user exists in the Database and his/her account is not activated yet, an

activation code is generated and sent to the Notification System. Then, an email including the

activation code is sent to the end-user and a success operation is returned to the administrator.

Accordingly, the end-user can use the code received in their email during account verification.

29

Figure 11. Administrator sends an activation code to end-user.

5.4 Administrator Sends a Reset Code to User for Account Reset

In this step, a system administrator can send a reset code to an end-user’s email (Figure 12). Then,

the Authentication System checks the provided input details (i.e., username), leading to one of the

following cases: i) if the user does not exist in the Database, an unsuccessful operation is returned,

along with a message notifying the system administrator that the provided user profile does not exist;

and ii) if the user exists in the Database and his/her account is not activated yet, an unsuccessful

operation is returned, along with a message notifying the system administrator that the provided user

profile is not activated yet; and iii) if the user exists in the Database and his/her account is already

activated, a reset code is generated and sent to the Notification System. Then, an email including the

reset code is sent to the end-user and a success operation is returned to the administrator. Accordingly,

the end-user can use the code received in their email for the account reset.

30

Figure 12. Administrator sends a reset code to end-user.

5.5 End-user Activates Account

In this step, the end-user activates the account that was created by the administrator (Figure 13). The

user enters the email and the one-time password (activation code) received in the email. Then, the

Authentication System checks the provided input details, leading to one of the following cases: i) if

the provided details are valid, the user account is activated, a success operation is returned, and the

user is redirected to the secret creation page; ii) if the provided details are not valid, an unsuccessful

operation is returned, along with a message notifying the user that the provided credentials are wrong.

31

Figure 13. User account verification and activation.

5.6 Creation of the Graphical and Textual Password

The first version of the password creation phase (D5.2 - Software on the Initial Verified User

Authentication System) has been adapted and includes two steps as follows. First, a grid of

personalized images to limit to the set of images linked to their hospital is illustrated to the users,

which illustrate sceneries from their hospitals. For the personalization of the images, we currently

limit the set of images to a predefined set that contains images highly relevant to the participants’

everyday activities and experiences within their healthcare environments. The users then select their

preferred image, which is then used as a background image on which the users create a secret gesture-

based password. Three types of gestures are allowed: taps, lines and circles. After creating the secret

graphical password they wish, users may also (optionally) create a textual passphrase (including

minimum 16 characters). Figure 14 illustrates the sequence diagram for the creation of graphical

password, and Figure 15 illustrates the sequence diagram for the creation of a textual password.

32

Figure 14. Creation of the graphical password.

Figure 15. Creation of the textual password.

33

5.7 Enable Two-Factor Authentication Type and Pair Mobile Device

After successful creation of the graphical and/or textual password, the user may choose to set a

second factor for authentication for increased security. For this purpose, a mobile application has been

developed, which is utilized by the user to login. The mobile application is downloaded and installed

by the user and then the user needs to pair the device with his/her Serums account. Before pairing the

device, an enrollment code or a QR code is generated and sent to the Web-based user interface.

Figure 16 illustrates the sequence of interactions for generating the enrollment and QR codes.

Next, to pair the device, the user enters the enrolment code or scans the QR code through the mobile

phone. When codes are valid, the 2FA feature is enabled and the mobile device of the user is

successfully paired with the Serums account. Otherwise, an error message is communicated to the

user. Figure 17 illustrates the sequence of interactions for generating the enrollment and QR codes.

Figure 16. Creation of the textual password.

34

Figure 17. Pairing the user’s device based on the enrollment code or the QR code.

5.8 Two-Factor Authentication Login using the Mobile Application

In this page, a user approves or rejects the two-factor authentication (2FA) login request through

his/her smartphone’s mobile application. Two types for 2FA are supported; login through a Time-

based One-Time Password (TOTP), or through a mobile-based push notification. The user initially

selects the preferred 2FA login type (TOTP or push notification). Figure 18 illustrates the sequence

of interactions for the generation of the two-factor authentication login types.

In case the TOTP option is selected, the login screen enables a textbox, waiting for the user to enter

the code that can be found on the mobile application (Figure 19). In case the push notification option

is selected, a request is made to the Google’s Firebase Cloud Messaging Platform, which then sends

the appropriate notification to the end-user’s mobile application (Figure 20).

35

Figure 18. Generation of two-factor authentication login types.

Figure 19. Two-factor authentication login through a time-based one-time password.

36

Figure 20. Two-factor authentication login through a mobile-based push notification.

5.9 Unpair Mobile Device from Two-Factor Authentication

Users have the option to opt out from two-factor authentication if they wish to do so. This can be

performed via the “Remove” option in the main screen of the mobile application. After successful

removal of the two-factor authentication option, users will login using only their graphical or textual

password, without the additional layer of two-factor authentication. Figure 21 illustrates the sequence

of interactions for unpairing the mobile device from the two-factor authentication.

Figure 21. Unpair mobile device from two-factor authentication.

37

6 Verification of the Authentication System

6.1 Statistical Model Checking

The first approach being used for the verification of the Authentication System is based on formal

methods. It requires a formal representation of both the system and the properties under verification.

One of the most commonly used system representations is transition systems where system behavior

is modelled with a set of states and relations between them describing how the system change states.

In formal methods, properties are represented with temporal logic.

Model Checking is one of the techniques applicable to transition systems and temporal logic. The

approach performs an exhaustive exploration of the state space of the system and, as a result, can

guarantee that the property is satisfied. Unfortunately, model checking is subject to ‘state space

explosion’: the size of the state space of non-trivial system can be extremely large and infeasible for

the exploration. Statistical Model Checking (SMC) (Legay et al., 2010) is an alternative approach that

combines ideas from model checking with statistics. The core idea of SMC is to run a large number of

simulations of the system checking the property on each simulation and then to use statistical methods

to decide the probability of the property to be satisfied. SMC has been broadly applied in different

projects, e.g. (Gu et al., 2020’ Basile et al., 2017; Noomene Ben Henda, 2014)

We have built a formal model of the Authentication System representing the developed

software. The model also includes other components of the Serums system as well as other

actors allowing us to reason about interactions between different components. Modelling of

the whole Serums system is also a significant part of WP6 - “Integration and Testing”.

We used the Uppaal tool (Uppaal, 2022) that provides an expressive modelling formalism and model

checkers allowing us to verify that the properties hold on the model. Uppaal models are defined as

networks of timed automata. An example of an automaton is shown in Figure 22.

Figure 22. Credential Hardening timed automata model.

An automaton can be seen as a graph where nodes are states of the system (e.g., ‘Receive’ state in

Figure 22 corresponds to the moment when Credential Hardening component receives a passphrase)

and edges are transitions defining how the system change states (e.g., the edge between ‘Receive’ and

‘Send’ states models the generation of an HMAC by the component and the preparation to send it).

Each transition has a set of optional labels. A guard is a Boolean expression controlling the

enablement of the transition (there is no guard depicted on Figure 22; an example could be a guard on

the transition from the ‘Init’ state to the ‘Receive’ modelling the reception of a passphrase that blocks

the transition if the passphrase is empty). The second label is an update, a sequence of actions that

modify the variables of the model (a blue label on the transition between ‘Receive’ and ‘Send’

38

modifies the value of a variable shared_au_ch). The updates are defined with a subset of C language.

The third label is a channel allowing automata to synchronize actions. Each channel is defined by a

specific variable and transitions of two automata labelled with the same channel are synchronized,

i.e., they must be taken simultaneously. For example, the transition from the ‘Init’ state of Figure 22

to the ‘Receive’ state is synchronized over the channel au_ch_requestHMAC. Another automaton

sending the passphrase to the Credential Hardening component shall have a transition with the same

channel and the two actions would be performed together. It is important to note that if two transitions

are synchronized and one of the automata cannot take the transition the second one cannot take the

transition either (e.g., Credential Hardening component cannot receive a second passphrase before it

finishes processing the first one). One of the two transitions shall be an initiator of the

synchronization (indicated with ‘!’) and the other is a receiver (indicated with ‘?’). In Figure 22,

sending a generated HMAC is initialized by the Credential Hardening component while reception of

the passphrase shall be initialized by another component.

Several timed automata are combined into a network via synchronizations and shared variables. At

each point of time the network has three options to evolve to the next state: 1) by passing time 2) by

one automaton making a transition that is not synchronized with other automata 3) by several

automata making a simultaneous transition synchronized over the same channel.

The Authentication System is modelled with 4 automata: Back-end, Front-end, Credential Hardening

and an auxiliary automaton for JWT refresh procedure. The model also includes automata for the

‘environment’ of the Authentication System, including Smart Health Center System (a front-end

component of the SERUMS system interacting with users), patients, doctors, and administrators. The

model of the Backend is shown in Figure 23. The central state is the initial state of the automaton.

This automaton does not initiate any action: it waits for inputs from other components. After receiving

a request, the component performs a set of actions modelling to the implemented software. Request

procession is represented by one of the petals in the model. Following the software code, requests are

checked for correctness. Some requests verify only the presence of required parameters (in the model

they are sent via shared variables), while other require additional checks, for example user being

registered, passphrase, and JWT. These checks are located in the transition guards. If any of the check

fails, the corresponding transition is taken that returns an error message via the corresponding

channel. In case of all checks are passed, the automaton performs the required actions and return the

result to the requestor. For example, if the component receives a request to create a JWT (middle-right

part of the model) via au_pga_create_jwt? channel (the symbol ‘?’ indicates that Backend is not an

initiator of the synchronization) it takes the value from the shared variable and parses it in order to

obtain three parameters: username, type of passphrase (graphical or text base) and the passphrase. The

outgoing transitions from the state has guards !checkInput(), and !checkInput() && !hasInDbVerif.

The checkInput function returns whether the parsing has been successful while the hasInDbVerif

function checks the presence of a user in the database. If any of the functions return false, the

automaton notifies the requestor via au_pga_incorrect_request! channel (where ‘!’ indicates that the

Backend initiates the notification) or au_pga_no_user! channel. If both checks are passed, the

automaton selects the next transition based on the value of current_val_3 variable that is updated

during the parsing of the authentication type. The graphical password directly checks the hash while

text-based passphrase interacts with the Credential Hardening automaton via au_ch_requestHMAC!

channel and wait for the reply from the Credential Hardening component. The reply is compared with

the correct hashed passphrase (textual or graphical depending on the authentication type parameter)

and it returns a JWT in case of successful match, otherwise, it returns a wrong credentials message.

39

Figure 23. Authentication Back-end timed automata model

40

We do not model the task queue and the database as separate automata. The design of the model

ensures that a new task cannot arrive before the end of processing of the previous task while the

database is incorporated inside the automata variables.

The model for Credential Hardening component (Figure 22) is simple: it gets the passphrase from the

User Authentication component, creates a HMAC and sends it back. Note that the model being an

abstraction of the original system does not include full implementation of the HMAC procedure.

Since the implementation of the function is taken from the standard openssl library, we assume the

implementation to be correct and, in the model, we assume that the original passphrase cannot be

recovered from the HMAC. The function generated in the model is returning the input.

The model for the front-end component is split into three parts for the ease of presentation. These

parts are shown in Figures 24, 25 and 26. First part represents the signup procedure. It starts from the

bottom right state by getting the username followed by creation of the graphical password, and textual

passphrase. In Figure 24, the procedure follows the circle in a counterclockwise direction and in case

of any failure the model moves to the state in the center followed by patient notification. The second

part models the login procedure, which starts with receiving the username. The Backend component

shows which type of identification is available for the user and requests a passphrase or a graphical

password afterwards. In Figure 25, the procedure starts from the bottom left state and moves in a

counterclockwise direction. In case of successful password check, the Front-end returns a JWT to the

user. The Front-end component interacts with both Backend and Users. The final part models

interactions with administrators: login, logout, creation of a new user, and password reset.

Figure 27 illustrates the interaction of a patient with the Authentication system. A sequence of actions

showed in the right-top part of the Figure 27 shows the actions required by a Sign-up procedure. The

left part of the figure shows the Login actions. Both procedures follow the circle in a

counterclockwise direction from the bottom right state. The model of a doctor is similar.

Administrators are modelled with an automaton shown in Figure 28.

41

Figure 24. Authentication front-end: Sign up procedure model.

42

Figure 25. Authentication front-end model: Login procedure model.

Figure 26. Authentication front-end model: Administrative procedures model.

43

Figure 27. Patient model for the authentication system.

Figure 28. Administrator automaton.

44

6.2 Properties Verification

For the verification of a model, the properties are checked with the Uppaal statistical model checker.

The properties shall be expressed in the Uppaal query language based on a simplified version of

Metric Interval Temporal Logic (MITL). Basic temporal operators in temporal logics are []p and

<>p. The former checks that p holds in all states, and the latter checks that p holds in at least one

future state. The properties has the following format: Pr[# <= N] F, where F is the property to

verify, N is the maximal length of traces, and # indicates that we consider the number of transitions.

Intuitively, the property checks the probability of F to be satisfied on traces containing at most N

transitions. Results returned by the SMC checker have the meaning depending on a temporal operator

used in F. For <> operator, the property is considered satisfied if the probability is not close to 0 and

unsatisfied otherwise. For [] operator, the property is satisfied if the probability is close to 1 and

unsatisfied otherwise.

For the verification of the Authentication System properties, we have removed the automata that are

not interacting with the Authentication System and simplified the remaining automata from the

environment in order to focus on the properties related to the system under verification. We limited

the trace length to 10000 steps: such length is sufficient to involve hundreds of interactions with the

Authentication System. Following, we list the properties with their description and their encoding in

MITL that we have verified. We omit Pr[# <= 10000] from the formulas in the list. We use -1 as null

or empty value for variables.

- The model does not deadlock, i.e. the model does not have a state from which it cannot progress.

This is checked with the following query: [] !deadlock.

- Users can login to the system provided they use the correct graphical password or passphrase.

The query is: <>(Doctor.Main), where Main is the state of Doctor automaton reached after

successful login. The query for patients is similar. An extended version of this query is <>(

Doctor.Main && Doctor.jwt != -1), that in addition checks that at the state where the user is

logged in the user also has a JWT.

- Users cannot login to the system without providing the correct graphical password or passphrase.

For this query we modified the users automaton forcing to provide an incorrect graphical

password or passphrase. [](!PatientWithoutPassword.Main). An alternative option checks that

such patient cannot receive a JWT: [](PatientWithoutPassword.jwt == -1)

- The user cannot login and receive a JWT if he has not signed up. The property is checked with

the following query: [] ((Patient.jwt != -1) => Patient.has_signedup). Each Patient has a

Boolean variable has_signedup initialized to False. After successful completion of the Sign up

procedure, the variable is set to True.

- An issued JWT can be verified by the Authentication System. This property can be checked by

adding an additional transition synchronized with the Backend on a channel au_pga_verify_jwt

and adding a Boolean variable that is set to True if the JWT verification fails. The model checker

verifies that the property holds: [] (! Backend.jwt_unverified).

- A dual to the previous property: a fake JWT fails verification by the Authentication system. The

Front-end component sends a fake JWT to the Backend with the assumption that the key used to

sign the JWT is unknown to the creator of the fake JWT. A Boolean variable is set to True if the

JWT verification succeeds: [] (! Backend.jwt_approved).

45

- A user cannot sign up without being registered by an admin. For this query we force admins to

not register a Patient0 and check [](!Patient0.has_signedup).

- A user can sign up provided that there is an admin registering users. <> (Patient.has_signedup).

Note that during simulation, admins may never register a particular user and therefore the query

cannot be satisfied with the probability close to 1, but for queries with <> temporal operator we

check the probability being not close to 0.

- A user cannot change password without being reset by an admin. We extend the behavior of one

of the patients with password change option. Admins are forced not to reset the patient password.

At the end of the password change procedure, there is a state PassChanged reachable in case of

successful password change and the query is: [] (! Patient.PassChanged).

- A dual property that a user can change password when admins are allowed to reset passwords.

<> (Patient.PassChanged).

- An admin can login to the Authentication System provided usage of a correct password.

<>(Admin.LoginSuccessful).

- A dual property – admin cannot login without correct password.

[](!AdminWithoutPassword.LoginSuccessful).

- The following group of properties is constructed via a single scheme. We generate an automaton

of a user that tries to interact directly with the Backend automaton. It is done with an assumption

that such user is an attacker, and the attacker has knowledge of expected request parameters but

not passwords of other users. If the Backend returns successful result, the attack reach the state

Success. The query is [] (!Attacker.Success). The property has not been verified by several

backend requests. Further exploration showed that while some of the request parameters are

checked in the request processing code, authorization parameters are added as an annotation to

the function and processed by Django Framework. Therefore, we had to update the model in

order to take into account these annotations. The query has been checked on a modified model

and the property failed with set_graphical_password request. Exploration of the deployed system

showed that indeed this request can be executed without proper authorization, and return a

success message in the case a password reset has been requested but not performed, at the

moment of attack, which limits its application.

6.3 Fuzzing

The second approach used for the verification of Authentication System is fuzzing. Fuzzing (short for

fuzz testing) is an effective and widely used technique for finding security bugs and vulnerabilities in

software. It inputs irregular test data into a target program to try to trigger a vulnerable condition in

the program execution (Chen et al., 2018). Technically, fuzzing tests a system with the continuous

processing of test cases generated by another program. At the same time, the system is monitored to

expose any defects revealed by processing this input.

Fuzzing techniques can be divided into three kinds: black box, white box, and gray box depending on

how much information they require from the target program at runtime (Jääskelä, 2016). Black-box

fuzzers are unaware of the internal program structure, that is, their target is a black-box, no feedback

other than what is directly observable is provided (Van Rooij et al., 2021). One of their main

advantages is their low overhead which allows them to exercise the program under test with millions

46

of inputs. In this way, their chances of triggering a bug increase. On the other hand, their lack of

knowledge on the program’s structure comes with a cost.

White-box fuzzing is based on the knowledge of internal logic of the target program (DeMott, 2006).

It uses a method which in theory can explore all execution paths in the target program. Unlike black-

box fuzzing, white-box fuzzing requires information from the target program and uses the required

information to guide test case generation. Specifically, starting execution with a given concrete input,

a white-box fuzzer first gathers symbolic constraints at all conditional statements along the execution

path under the input.

Gray-box fuzzing stands in the middle of black-box fuzzing and white-box fuzzing to effectively

reveal software errors with partial knowledge of the target program. By this means, a gray-box fuzzer

can obtain code coverage of the target program at runtime; then, it utilizes this information to adjust

its mutation strategies to create test cases which may cover more execution paths or find bugs faster.

Gray-box fuzzing only uses the acquired information to guide test case generation, but it cannot

guarantee that using this piece of information will surely generate better test cases to cover new paths

or trigger specific bugs. By contrast, white-box fuzzing utilizes source codes or binary codes of the

target program to systemically explore all the execution paths.

Although several fuzzing tools have been developed over the years (Figure 29), they are mostly

designed for local executables and not usable for web applications like our targets.

Figure 29. Fuzzing Technique Evolution Diagram (Chen et al., 2018).

A black-box fuzzer: wfuzz (http://wfuzz.io – Figure 30), is one of few appropriate fuzzers publicly

available for our targets, i.e., front and back-end web applications for the Authentication System. The

wfuzz allows any input to be injected in any field of an HTTP request since it is based on a simple

concept: it replaces any reference to the FUZZ keyword by the value of a given payload.

Figure 30. WFuzz – A black-box fuzzer for testing.

We performed the black-box fuzzing along with pre-loaded http sessions in order to mimic the gray-

box fuzzing throughout our target web applications using the wfuzz.

47

6.4 Fuzzing Checks

We performed the fuzzing to the front and backend web applications for the Authentication System.

More specifically, we scanned vulnerable paths within or without a user session and tested user login

procedure.

To scan for the paths to access the system we used the word list provided by wfuzz and collected

accessible paths in front- and back-ends.

for f in wfuzz/wordlist/general/* #for all wordlist files in general category

do

 #Runnning wfuzz with hiding the response of code: 404 and 403 along two different common

directories

 wfuzz -w $f --hc 404,403 https://localhost:9001/web_app/login_admin/FUZZ

 wfuzz -w $f --hc 404,403 https://localhost:9001/web_app/FUZZ

done

In addition to these, we performed fuzzing on values of random cookie parameters and recursive

fuzzing of the paths up to the depth of three. In order to fuzz within a user session, we first obtained

the cookies: csrftoken, sessionid, jwt_access and jwt_refresh, using the commands listed below, and

then injected those cookies into the fuzzing requests.

#Access to login page and get csrftoken cookie

curl -k 'https://localhost:9001/web_app/login_username/' -o login_username.html -c

cookie.txt

csrftoken=$(grep token cookie.txt |cut -f 7)

#Feed username : test@test.com and get session cookie

curl --data-urlencode username=test@test.com -k https://

localhost:9001/web_app/check_passphrase_set -b cookie.txt -c cookie.txt -e

https://localhost:9001/web_app/login_username -X POST -H "X-CSRFToken: $csrftoken"

sessionid=$(grep sessionid cookie.txt |cut -f 7)

 #Feed passpharase and get jwt_access and jwt_refresh cookies

curl -k https://localhost:9001/web_app/passphrase_login -b "csrftoken=$csrftoken;

sessionid=$sessionid" -c cookie.txt -e https://localhost:9001/web_app/text_login.html -d

'username=test%40test.com&passphrase=00ph0120541pin63c70m9&total_time_until_submit=13565&tota

l_time_until_submit_since_page_load=13285&time_interaction_started=0&is_reset=false' -H "X-

CSRFToken: $csrftoken"

jwt_access=$(grep jwt_access cookie.txt |cut -f 7)

jwt_refresh=$(grep jwt_refresh cookie.txt |cut -f 7)

Commands for getting into a user session (username: test@test.com, passphrase:

00ph0120541pin63c70m9)

Front-end

Our scanning for accessible pages at front-end server led to the following pages. Note that the

presence of the page is not a vulnerability but a potential entry point for further search. We found

each of those pages is not associated with just one fixed url but with keywords from the same

categories.

Without user session

Below shows the discovered pages without user session.

48

https://localhost:9001/web_app/add_user.php

Empty json string {} as the below image.

Figure 31. Empty json string {} as the below image.

https://localhost:9001/web_app/cgi-sys/realsignup.cgi

Registration form to sign up a user as the below image.

Figure 32. Registration form to sign up a user.

https://localhost:9001/web_app/login_admin/email

Login page of System Administrator

https://localhost:9001/web_app/login_admin/demo

The first page of Demonstration

https://localhost:9001/web_app/login_admin/index

Welcome page of Serums

https://localhost:9001/admin/ redirecting to https://localhost:9001/admin/login/?next=/admin/

Login page of Django administrator as the below image. Django administrator login/password does

not coincide with the Serums administrator credentials, neither vulnerable standard login/password

pairs work.

Figure 33. Django administrator page.

49

https://localhost:9001/web_app/login_admin/images

redirects to https://localhost:9001/web_app/login_username

Figure 34. Sign in page.

Within a user session

In addition to the pages discovered without user session shown above, the following page was found

by fuzzing within a user session.

https://localhost:9001/web_app/images

The image selection page for the gesture pass. This page shall be accessible only during creation or

update of the graphical password; however it is accessible at any point of time from a user session.

Further steps of the password update cannot be reached from this page: after pressing the continue

button, the system checks that the password update has not been initiated and redirects to the login

page.

Figure 35. Image selection for creating a graphical password.

Back-end

Our fuzzing against the back-end server led to the following three pages.

50

https://localhost:9000/cgi-bin/printenv

A testing script of the apache server. The script if allowed to be executed could show internal

information from the server. This output and additional checks showed that the testing functionality is

disabled and the vulnerability is not present.

https://localhost:9000/cgi-bin/test-cgi?/*

Another testing script of Apache server.

51

https://localhost:9000/admin/login

Django admin login page

Figure 36. Django admin login page.

User login

We performed fuzzing of the user login procedure. We registered a user: test@test.com with a

passphrase that can found in a word list of SecLists git repository and considered to be unsafe.

The login procedure consists of three steps:

1. Load login page and token cookie

2. Send username along with the token cookie through a POST request and get session id cookie

3. Send username, passphrase and the other fixed parameters along with token and session id.

Therefore, we first processed the step 1 and 2 with curl commands, and then fuzzed the step 3 using

the token and session id cookies.

#Step 1

curl -k https://localhost:9001/web_app/login_username/ -o login_username.html -c cookie.txt

token=$(grep token cookie.txt |cut -f 7)

 #Step 2

curl --data-urlencode username=test@test.com –k

https://localhost:9001/web_app/check_passphrase_set -b cookie.txt -c cookie.txt –e

https://localhost:9001/web_app/login_username -X POST -H "X-CSRFToken: $token"

session=$(grep sessionid cookie.txt |cut -f 7)

 #Step 3

wfuzz -w /wordlist/bt4-password.txt --hc 405,403 --hh 104 -b "csrftoken=$token;

sessionid=$session" -H "Referer: https://localhost:9001/web_app/text_login.html" -H "X-

CSRFToken: $token" –d

"username=test%40test.com&passphrase=FUZZ&total_time_until_submit=13565&total_time_until_subm

it_since_page_load=13285&time_interaction_started=0&is_reset=false"

https://localhost:9001/web_app/passphrase_login

Commands for fuzzing the login procedure with a known username. As shown below, the passphrase

is identified at the 136th candidate of the word list.

https://github.com/danielmiessler/SecLists

52

Figure 37. Output from wfuzz.

The server allowed unlimited number of attempts (in our case, approx. 47k attempts) to test

passphrase within the same session, which seems a potential risk.

Above, we fuzzed the procedure with the known username, however, there is also a way to find

registered usernames using the fuzzing. At the #Step 2, the server responds either the request succeeds

or not as below.

{"success": false, "set": false, "errors": "User not found in the system"}

{"success": false, "set": false, "errors": "Bad request - Please provide a valid email"}

{"success": false}

Examples of server responses for the failure of #Step 2: Username

And therefore, it is also possible to search registered usernames by fuzzing with approx. 9M

usernames across four wordlists from wfuzz and SecLists. If the username is found, then the

associated password can be fuzzed as above with approximately 50M candidate passwords. And

again, such cracking can be avoided by introducing the user locking system.

The login with a graphical password can be fuzzed around the different parameters for gestures in a

similar manner.

We performed the fuzzing to discover vulnerable paths and crack a user login. We invite the

developers and service providers who will use the FlexPass system to judge if the discovered paths

introduce vulnerabilities. However, for the user login, we found a potential risk to be broken by

fuzzing, and thus recommend introducing a locking function after a certain number of login attempt

failures.

53

7 Implications

7.1 FlexPass Applicability in the Healthcare Domain

In this section we elaborate on the applicability of FlexPass in the broader healthcare domain and

provide guidelines and prototypes that can serve as a basis for implementing an adaptation and

personalization system based on the suggested authentication paradigm. Figure 38 illustrates the

envisioned FlexPass system within healthcare environments. At a first stage, an organization would

need to identify mainstream spatial areas of the hospital, i.e., areas that visited by the majority of

individuals (medical staff, patients, relatives, visitors, etc.). Next, the spatial relevance of each

mainstream area should be identified in order to create a neighborhood/relationship map among the

diverse mainstream spatial areas identified, e.g., the mainstream spatial area “reception hall” is related

to the hospital’s “cafeteria”, hence, a relationship rule would be created connecting the two areas.

Finally, the system administrator would need to prepare and upload relevant images depicting

sceneries for each of the identified mainstream of the hospital. These images would then be processed

through an adaptation and recommendation engine that would recommend best-fit images to end-

users aiming to improve memorability and security of passwords. For doing so, the recommendation

engine would also receive as input the end-users visitation record in order to extract the relevant

experiences and visits the end-users had in specific mainstream spatial areas of the hospital. In this

respect, FlexPass will leverage on the existing user authentication infrastructure that exists in the

healthcare organization for retrieving the user’s visitation record.

Figure 38. The envisioned FlexPass system within healthcare environments.

The following scenarios are anticipated: i) Enrolment Scenario: During user enrolment, the system

would retrieve (based on the username and a unique enrolment code) the user’s visitation record

within the hospital. Based on the semantic similarity of the user visits and the mainstream spatial

areas of the hospital, the system recommends three relevant images to choose from for creating their

graphical password. Note that the three images would have the same level of complexity and hotspots

to avoid scenarios in which the user would create predictable passwords; ii) Login Scenario: During

login, the system would illustrate two options for authentication (graphical vs. textual), and

accordingly the user would enter their secret credentials to login; and iii) Reset Scenario: Password

54

reset could be initiated either by the user (e.g., in case they forget their password) or by the system

based on the organization’s applied policy. In this case, the same procedure would follow as in the

enrolment scenario, considering however the previous image selections of the user, in order to avoid

users selecting the same password.

7.2 FlexPass Personalization Workflow and Recommendation Rules

We envision that FlexPass may be deployed as a standalone user authentication system within

healthcare organizations, which would consist of the following modules (Figure 39): i) the System

Administration module; ii) the User Modeling module; iii) the Recommendation module; and iv) the

Flexible User Authentication module. The System Administration module would allow administrators

to upload and maintain images that depict sceneries of various locations of the hospital (e.g., reception

hall, main rooms of the hospital, garden, etc.). The system’s image database would also be filled by

end-users, would be able to upload their own images taken within the hospital, once approved by the

system administrator by following internal policies and requirements of the organization. The User

Modeling module would analyze the existing health record of the patients based on their activity and

visits at the hospital (e.g., patient may visit doctors of cardiology department, etc.). Based on the

analysis, the module would infer the patient’s frequent visits and important locations within the

hospital, which would be then provided as input to the Recommendation module to recommend

images depicting sceneries from the patient’s most common visits. The Recommendation module

would be further enhanced with image analysis technologies aiming to annotate the images

semantically and automatically with the depicted content, which may be used during password

creation for recommendation and user guidance for the creation of more memorable and secure

passwords. Finally, the Flexible User Authentication module would be responsible for authenticating

users based on an easy-to-use and a flexible authentication paradigm that would be based on the

recommended and/or user-adaptable graphical passwords.

Figure 39. FlexPass personalization workflow – building on Fidas et al. (2015).

55

Algorithm #1 presents our content-based recommendation algorithm that will recommend relevant

images during password creation/reset based on the rules of mainstream spatial areas and user’s

visitation records and experiences within the hospital.

Algorithm 1. Algorithm for image recommendation during password creation/reset.

Algorithm #1: Image recommendation during password creation/reset

Input: A set of user models that describe the users’ frequent visits and important

locations at the hospital, filtered to contain relevant information based on the

relationship map between the mainstream areas um = {um1, um2, …, umm} and a set of

candidate images that depict the mainstream spatial areas of the hospital, provided by the

system administrator and the end-users ci = {ci1, ci2, …, cik}.

Output: The top N images that are recommended to the end-user based on the semantic

similarity scores.

 1: procedure Mainstream_Map()

 2: ma = identify_mainstream_areas();

 3: mm = create_relationship_map(ma);

 4: return mm;

 5: end procedure

 6: procedure Candidate_Images()

 7: ci_set = upload_images();

 8: for i := 1 to k do begin

 9: eiti = explicit_image_tags(); # Annotated by system administrator

 10: iiti = implicit_image_tags(); # Annotated by computer vision techniques

 11: cii = eiti ∪ iiti;

 12: cii = clean_text(cii);

 13: append_to_set(ci_set, cii);

 14: end for

 15: return ci_set;

 16: end procedure

 17: procedure Recommend_Images(mm, ci)

 18: for i := 1 to m do begin

 19: semantic_ranking = {};

 20: fvi = frequent_visits();

 21: ili = importan_locations();

 22: fmmi = filter_mainstream_map(mm, fvi, ili);

 23: umi = fvi ∪ ili ∪ fmmi;

 24: umi = clean_text(umi);

 25: for j := 1 to k do begin

 26: ssij = semantic_similarity(umi, cij); # through NLP techniques

 27: semantic_ranking[i][j] = ssij;

 28: end for

 29: sort_by_value(semantic_ranking);

 30: recommend_top_N(umi, semantic_ranking);

 31: end for

 32: end procedure

 33: mm = Mainstream_Map();

 34: ci = Candidate_Images();

 35: Recommend_Images(mm, ci);

56

8 Conclusions

The aim of this deliverable D5.4. - “Report on Final User Authentication System” is to report the

outcome of the design, development, verification and evaluation of the final software of the user

authentication scheme. This includes the final suggested authentication paradigm based on a novel

retrospective approach in graphical passwords, the general architecture design, the development

details of the credential hardening component, the sequence diagrams of use-case scenarios of the

user authentication scheme, the design of the front-end prototypes of the final user authentication

system, the results of the verification of the authentication properties, the results of the user evaluation

of the user authentication system and the description of the core endpoints of the Application

Programming Interface.

The outcome of this deliverable will be used as an essential input for other tasks and deliverables in

Serums. Specifically, the API and the underlying database will be used as input in D2.6 for the final

specifications and final software of the Smart Patient Health Records, and in D4.3 for the final data

fabrication and semantic-preserving encryption. The authentication architecture, APIs and database

will be used as an essential input in D6.3 for integrating the authentication system in the overall

Serums’ smart healthcare system software. The user interface designs of the user authentication tasks

will be evaluated as part of D7.6 aiming to further evaluate the likeability aspects of FlexPass, its

security and usability characteristics, the design of the user authentication system front-end, measure

the users’ acceptance, as well as the users’ perceptions on aspects such as usability, memorability,

security and trust. Finally, the outcome of D5.4 will be used as a basis for further elaborating ideas

and areas for improvement for the user authentication system as part of the Serum technical roadmap.

Limitations of this research work are related to the fact that certain background images were used to

control the factors of the user evaluation studies (as part of WP7’s activities). Nevertheless, we

provided the most commonly used image categories (representing landscapes, sceneries) and images

of similar complexity. Aiming to increase external validity of this research work, we plan to explore a

wider variety of image categories to triangulate findings. Furthermore, we stress that FlexPass is also

susceptible to shoulder-surfing attacks, similar to the majority of graphical password systems (Tari et

al., 2006; Chiasson et al., 2007). To minimize the threats of shoulder-surfing attacks, expansion of

this research will consider adopting fake cursors (De Luca et al., 2013), decoy techniques (Zakaria et

al., 2011) during graphical password creation. Likewise, the aforementioned countermeasures could

also be used in the case of stealth attacks, during which the adversary takes a video from a distance

while the user enters their credentials (Yue et al., 2014).

In addition, future work includes investigating the impact of other intrinsic human factors (e.g.,

emotional parameters, cognitive styles, etc.) in personalized interactive graphical user authentication

schemes (Fidas et al., 2021). Considering that emotions correlate with long-term memory (Tyng et al.,

2017), and that events associated with emotions are more likely to be remembered (Christianson,

1992), future work entails investigating whether differences exist in individuals’ emotions triggered

when utilizing personalized images in FlexPass and when utilizing non-personalized images in other

graphical user authentication schemes.

Furthermore, FlexPass requires users to remember only one password at a time, similar to the

majority of graphical user authentication schemes. Hence, there is limited knowledge regarding

memory interference (Biddle et al., 2012), which refers to “the impaired ability to remember an item

when it is similar to other items stored in memory” (Anderson and Neely, 1996). Future research

57

entails investigating whether memory interference occurs in cases in which individuals have created

graphical passwords on similar images across multiple accounts in FlexPass.

Finally, evidence suggests that individuals tend to reuse the same or similar passwords across multiple

accounts, aiming to reduce the memory load of remembering multiple passwords (Biddle et al., 2012).

Such approaches have a negative impact on the security. Hence, another future research direction

entails investigating whether differences exist in password reuse between individuals who utilize

personalized images in FlexPass and individuals who utilize non-personalized/generic images in other

graphical user authentication schemes.

We anticipate that the suggested approach will have a positive impact on both healthcare

organizations and end-users. From the organization’s perspective, the flexible approach will assist

healthcare organizations to easily adjust their policies to the varying roles of their end-users (patients,

doctors, administrators), in which current practice indicates that the “one-size-fits-all” approach is not

adequate in the highly dynamic and heterogenous contexts of use in the healthcare domain. From the

end-user’s perspective, the suggested flexible and personalized paradigm and supported results open

new directions for considering novel knowledge-based user authentication mechanisms to assist end-

users to choose the “best-fit” authentication scheme depending on preference, unique characteristics

and the context of interaction (e.g., interaction in the office, in the emergency room, off the network,

and so on).

Within nowadays information era, patients and medical staff interact in highly dynamic healthcare

environments and contexts, and tend to use multiple devices to authenticate themselves, it is obvious

that the current widely deployed “one-size-fits-all” text-based authentication paradigm might soon

become obsolete. Hence, we believe that approaches like FlexPass provide an alternative solution to

current state-of-the-art research and practice, and have the potential to be easily adopted with a rather

inexpensive solution compared to other token-based (e.g., smartcards) and biometric-based (e.g.,

fingerprint) solutions, which necessitate increased implementation effort and maintenance costs.

58

References

Abadi, M., Barham, P., Chen, J. et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th

{USENIX} symposium on operating systems design and implementation ({OSDI} 16), 265-283.

Anderson, M. C., Neely, J. H. Interference and inhibition in memory retrieval. In Memory. Elsevier, 1996, pp.

237–313

Atkinson, R.C., Shiffrin, R.M. (1968). Human memory: a proposed system and its control processes. In: Spence,

K.W., Spence, J.T. (eds.), The psychology of learning and motivation (Volume 2), Academic Press, 89-195

Baddeley, A. (1990). Human memory: theory and practice. Lawrence-Erlbaum, London

Basile, D., Giandomenico, F.D., Gnesi, S. Statistical Model Checking of an Energy-Saving Cyber-Physical

System in the Railway Domain. In Proceedings of the Symposium on Applied Computing, 2017

Belk, M., Fidas, C., Germanakos, P. and Samaras, G., 2017. The interplay between humans, technology and

user authentication: A cognitive processing perspective. Computers in Human Behavior, 76, pp. 184-200

Belk, M., Fidas, C., Pitsillides, A. (2019). Flexpass: Symbiosis of seamless user authentication schemes in IoT.

In Proceedings of the Conference on Human Factors in Computing Systems (CHI 2019), ACM Press, 2019

Biddle, R., Chiasson, S., van Oorschot, P. (2012). Graphical passwords: Learning from the first twelve years.

ACM Computing Surveys, 44(4), 41 pages

Biddle, R., Chiasson, S., Van Oorschot, P. C. Graphical passwords: Learning from the first twelve years. ACM

Computing Surveys (CSUR) 44, 4 (2012), 1–41

Burr, W.E., Dodson, D.F., Polk, W.T. (2006). Electronic authentication guideline. National Institute of

Standards and Technology, Technical report

Chen, C., Cui, B., Ma, J., Wu, R., Guo, J., & Liu, W. (2018). A systematic review of fuzzing techniques.

Computers and Security, 75, 118–13

Chiasson, S., Van Orschot, P. C., Biddle, R. Graphical password authentication using cued click points. In

European Symposium on Research in Computer Security (2007), Springer, 359–374.

Christianson, S.-A. Emotional stress and eyewitness memory: a critical review. Psychological bulletin 112, 2

(1992), 284

Constantinides, A., Belk, M., Fidas, C., Beumers, R., Vidal, D., Huang, W., Bowles, J., Webber, T., Silvina, T.,

Pitsillides, A. (2021). Security and Usability of a Personalized User Authentication Paradigm: Insights from a

Longitudinal Study with Three Healthcare Organizations. ACM Transactions on Computing for Healthcare

(submitted; major revision; second round of reviews)

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). Design and Development of a Patient-centric User

Authentication System. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and

Personalization (Adjunct UMAP 2020), 201-203

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2019. On the accuracy of eye gaze-driven classifiers for

predicting image content familiarity in graphical passwords. In Proceedings of the ACM Conference on User

Modeling, Adaptation and Personalization (UMAP 2019). ACM Press, 201-205

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2020. An eye gaze-driven metric for estimating the

strength of graphical passwords based on image hotspots. In Proceedings of the International Conference on

Intelligent User Interfaces (IUI 2020), ACM Press, 33–37

Constantinides, A., Fidas, C., Belk, M., Pietron, A., Han, T., Pitsillides, A. (2021). From hot-spots towards

experience-spots: Leveraging on users’ sociocultural experiences to enhance security in cued-recall graphical

authentication, International Journal of Human-Computer Studies, 149

59

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. 2019. "I Recall this Picture": Understanding Picture

Password Selections based on Users’ Sociocultural Experiences. In IEEE/WIC/ACM International Conference

on Web Intelligence (WI 2019), ACM Press, 408-412

Constantinides, A., Pietron, A., Belk, M., Fidas, C., Han, T., Pitsillides, A. 2020. A Cross-cultural Perspective

for Personalizing Picture Passwords. In Proceedings of the 28th ACM Conference on User Modeling,

Adaptation and Personalization (UMAP 2020), ACM Press, 43-52

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.

2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 3213-3223.

Daniel Lowe Wheeler. 2016. Zxcvbn: low-budget password strength estimation. In Proceedings of the 25th

USENIX Conference on Security Symposium (SEC'16). USENIX Association, USA, 157–173.

De Luca, A., Von Zezschwitz, E., Pichler, L., Hussmann, H. Using fake cursors to secure on-screen password

entry. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), 2399–2402.

DeMott, J. “The evolving art of fuzzing,” in Proc. DEF CON Conf., vol. 14, 2006, pp. 1–25.

Eikey, E. V., Murphy, A.R., Reddy, M.C., Xu, H. (2015). Designing for privacy management in hospitals:

Understanding the gap between user activities and IT staff’s understandings. International Journal of Medical

Informatics, 84(12), 1065-1075

Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A. 2010. The pascal visual object classes

(voc) challenge. International journal of Computer Vision, 88(2), 303-338.

Fidas, C., Belk, M., Portugal, D., Pitsillides, A. (2021). Privacy-preserving biometric-driven data for student

identity management: Challenges and approaches. ACM User Modeling, Adaptation and Personalization

(UMAP 2021 Adjunct), ACM Press, 368-370, doi: 10.1145/3450614.3464470

Fidas, C., Belk, M., Constantinides, C., Constantinides, A., Pitsillides, A. (2021). A field dependence-

independence perspective on eye gaze behavior within affective activities. IFIP TC13 Human-Computer

Interaction (INTERACT 2021), Springer-Verlag, 63-72, doi:10.1007/978-3-030-85623-6_6

Fidas, C., Hussmann, H., Belk, M., Samaras, G. (2015). iHIP: Towards a User Centric Individual Human

Interaction Proof Framework. CHI Extended Abstracts 2015, ACM Press, 2235-2240

Gu, R., Enoiu, E., Seceleanu, C. TAMAA: UPPAAL-based mission planning for autonomous agents. In

Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020

Jääskelä, E. Genetic algorithm in code coverage guided fuzz testing, Dept. Comput. Sci., Univ. Oulu, 2016.

Johnson, J., Seixeiro, S., Pace, Z., van der Bogert, G., Gilmour, S., Siebens, L., Tubbs, K., Microsoft Corp

(2014). Picture gesture authentication. U.S. Patent 8,650,636. Retrieved from

https://google.com/patents/US8910253

Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G. and Avouris, N., 2018. Influences of human cognition

and visual behavior on password strength during picture password composition. In Proceedings of the 2018 CHI

conference on human factors in computing systems (pp. 1-14)

Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N., Cranor, L., Egelman, S. (2011). Of

passwords and people: Measuring the effect of password-composition policies. ACM Conference on Human

Factors in Computing Systems (CHI 2011), ACM Press, 2595-2604

Kuznetsova, A., Rom, H., Alldrin, N. et al. 2020. The open images dataset v4. International Journal of

Computer Vision 128, 1956-1981. DOI: https://doi.org/10.1007/s11263-020-01316-z

Legay, A., Delahaye, B., Bensalem, S. Statistical model checking: An overview. In: International Conference on

Runtime Verification. pp. 122–135. Springer (2010)

60

Leon, B., Boštjan, B. (2019). Rejecting the death of passwords: Advice for the future. Computer Science and

Information Systems, 16(1), 313-332

Mare, S., Baker, M., Gummeson, J. (2016). A study of authentication in daily life. Symposium on Usable

Privacy and Security (SOUPS 2016), USENIX Association, 189-206

Mason, J., Dave, R., Chatterjee, P., Graham-Allen, I., Esterline, A., Roy, K. (2020). An investigation of

biometric authentication in the healthcare environment. Array 8, 100042

Noomene Ben Henda. 2014. Generic and efficient attacker models in SPIN. In Proceedings of the 2014

International SPIN Symposium on Model Checking of Software (SPIN 2014). ACM, New York, NY, USA, 77-

86. Doi: http://dx.doi.org/10.1145/2632362.2632378

Paivio, A. (2006). Mind and its evolution: A dual coding theoretical approach. Lawrence-Erlbaum, Mahwah, NJ

Paszke, A., Gross, S., Massa, F. et al. 2019. Pytorch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Systems 32, 8024-8035.

Serums Deliverable 5.1 - Initial Report on Security Metrics and Authentication Policies (2019). Deliverable of

EU Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Serums Deliverable 5.2 - Software on the Initial Verified User Authentication System (2020). Deliverable of EU

Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Serums Deliverable 5.3 - Software on the Refined Verified User Authentication Scheme (2021). Deliverable of

EU Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Squire, L (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and

memory. Journal of Cognitive Neuroscience, 4(3), 232-243

Sternberg, R.J. (2003). Cognitive theory. Thomson Wadsworth, Belmont, CA

Tari, F., Ozok, A. A., Holden, S. H. A comparison of perceived and real shoulder-surfing risks between

alphanumeric and graphical passwords. In Proceedings of the second symposium on Usable privacy and security

(2006), 56–66.

Tsung-Yi, L., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan D., Dollár, P., Zitnick, C.L. 2014.

Microsoft coco: Common objects in context. In European Conference on Computer Vision. Springer, 740-755

Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1-25

Tyng, C. M., Amin, H. U., Saad, M. N., Malik, A. S. The influences of emotion on learning and memory.

Frontiers in psychology 8 (2017), 1454

Uppaal (2022). http://www.uppaal.org

Van Rooij, O., Charalambous, M. A., Kaizer, D., Papaevripides, M., & Athanasopoulos, E. (2021). webFuzz:

Grey-Box Fuzzing for Web Applications. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Williams, H. L., Conway, M. A., Cohen, G. (2008). Autobiographical memory. In Cohen, G., Conway, M.A.

(Eds.), Memory in the Real World (3rd ed.), 21-90, Hove, UK: Psychology Press

Yue, Q., Ling, Z., Fu, X., Liu, B., Ren, K., Zhao, W. Blind recognition of touched keys on mobile devices. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (2014), 1403–1414

Zakaria, N. H., Griffiths, D., Brostoff, S., Yan, J. Shoulder surfing defence for recall-based graphical passwords.

In Proceedings of the seventh symposium on usable privacy and security (2011), pp. 1–12.

Zhao, Z., Ahn, G.J., Seo, J.J. and Hu, H., 2013. On the security of picture gesture authentication. In Presented as

part of the 22nd {USENIX} Security Symposium ({USENIX} Security 13) (pp. 383-398).

61

ABBREVIATIONS

2FA Two-Factor Authentication

API Application Programming Interface

CSS Cascade Style Sheets

HMAC Hash-based Message Authentication Code

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MAC Message Authentication Code

PGA Picture Gesture Authentication

POC Proof-of-Concept

QR Quick Response

RFID Radio Frequency Identification

SHA-256 Secure Hash Algorithm

SSL Secure Sockets Layer

TLS Transport Layer Security

TOTP Time-based One-Time Password

UI User Interface

UX User Experience

WSGI Web Server Gateway Interface

62

APPENDIX A – Contributions to Research Publications based on

Activities within Work Package 5

Belk, M., Fidas, C., Katsi, E., Constantinides, A., Pitsillides, A. (2021). An empirical study of picture

password composition on smartwatches. IFIP TC13 Human-Computer Interaction (INTERACT

2021), Springer-Verlag, 655-664, doi: 10.1007/978-3-030-85610-6_37

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2021). Understanding insider attacks in

personalized picture password schemes. IFIP TC13 Human-Computer Interaction (INTERACT

2021), Springer-Verlag, 722-731, doi: 10.1007/978-3-030-85610-6_42

Fidas, C., Belk, M., Constantinides, C., Constantinides, A., Pitsillides, A. (2021). A field dependence-

independence perspective on eye gaze behavior within affective activities. IFIP TC13 Human-

Computer Interaction (INTERACT 2021), Springer-Verlag, 63-72, doi:10.1007/978-3-030-85623-6_6

Leonidou P., Constantinides A., Belk M., Fidas C., Pitsillides A. (2021). Eye gaze and interaction

differences of holistic versus analytic users in image-recognition human interaction proof schemes.

Human-Computer Interaction International (HCII 2021) – HCI for Cybersecurity, Privacy and Trust,

LNCS, Springer-Verlag, 66-75, doi: 10.1007/978-3-030-77392-2_5

Constantinides, C., Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2021). A comparative

study among different computer vision algorithms for assisting users in picture password

composition. ACM User Modeling, Adaptation and Personalization (UMAP 2021 Adjunct), ACM

Press, 357-362, doi: 10.1145/3450614.3464474

Fidas, C., Belk, M., Portugal, D., Pitsillides, A. (2021). Privacy-preserving biometric-driven data for

student identity management: Challenges and approaches. ACM User Modeling, Adaptation and

Personalization (UMAP 2021 Adjunct), ACM Press, 368-370, doi: 10.1145/3450614.3464470

Constantinides, A., Fidas, C., Belk, M., Pietron, A., Han, T., Pitsillides, A. (2021). From hot-spots

towards experience-spots: Leveraging on users’ sociocultural experiences to enhance security in cued-

recall graphical authentication. International Journal of Human-Computer Studies, 149, Elsevier. doi:

10.1016/j.ijhcs.2021.102602

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). Design and Development of a Patient-

centric User Authentication System. Adaptive and Personalized Privacy and Security Workshop

(APPS 2020), UMAP (Adjunct Publication).doi: 10.1145/3386392.3399564

Constantinides, A., Pietron, A., Belk, M., Fidas, C., Han, T., Pitsillides, A. (2020). A Cross-cultural

Perspective for Personalizing Picture Passwords. ACM User Modeling, Adaptation and

Personalization (UMAP 2020), ACM Press, 43-52, doi: 10.1145/3340631.3394859

Costi, A., Belk, M., Fidas, C., Constantinides, A., Pitsillides, A. (2020). CogniKit: An Extensible

Tool for Human Cognitive Modeling based on Eye Gaze Analysis. ACM Intelligent User Interfaces

(IUI Companion 2020), ACM Press, 130-131, doi: 10.1145/3379336.3381460

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). An eye gaze-driven metric for

estimating the strength of graphical passwords based on image hotspots. ACM Intelligent User

Interfaces (IUI 2020), ACM Press, 33-37, doi: 10.1145/3377325.3377537

Janjic, V., Bowles, J.K.F., Vermeulen, A. F., Silvina, A., Belk, M., Fidas, C., Pitsillides, A., Kumar,

M., Rossborry, M., Vinov, M., Given-Wilson, T., Legay, A., Blackledge, E., Arredouani, R.,

63

Stylianou, G., Huang, W. (2019). The SERUMS tool-chain: ensuring security and privacy of medical

data in smart patient-centric healthcare systems. (IEEE Big Data), Los Angeles, December 2019,

IEEE Press. doi: 10.1109/BigData47090.2019.9005600

Fidas, C. (2019). Eye tracking based cognitive-centered user models. ACM Conference on Web

Intelligence (WI 2019), ACM Press, 433-437. doi: 10.1145/3350546.3352563

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2019).“I Recall this Picture”: Understanding

Picture Password Selections based on Users’ Sociocultural Experiences. ACM Web Intelligence (WI

2019), ACM Press, 408-412. doi: 10.1145/3350546.3352557

Fidas, C., Belk, M., .Hadjidemetriou,G., Pitsillides A. (2019). Influences of Mixed Reality and

Human Cognition on Picture Passwords: An Eye Tracking Study Published by Springer Nature

Switzerland AG 2019 D. Lamas et al. (Eds.): (INTERACT 2019), LNCS 11747, pp. 304–313, 2019.

doi: 10.1007/978-3-030-29384-0_19

Diomedous, C., Athanasopoulos E. (2019). Practical Password Hardening Based on TLS.Springer

Nature Switzerland AG 2019 R. Perdisci et al. (Eds.): (DIMVA 2019), LNCS 11543, pp. 441–460,

2019. doi: 10.1007/978-3-030-22038-9_21

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2019). On the accuracy of eye gaze-driven

classifiers for predicting image content familiarity in graphical passwords. ACM User Modeling,

Adaptation and Personalization (UMAP 2019), ACM Press, 201-205. doi: 10.1145/3320435.3320474

Janjic, V., Bowles, J.K.F., Belk, M., Pitsillides. A. (2019). Security And Privacy Of Medical Data:

Challenges For Next-Generation Patient-Centric Healthcare Systems. (UMAP 2019) Adjunct:

Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization June

2019 Pages 213–214. doi: 10.1145/3314183.3326364

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2019). On the Personalization of Image

Content in Graphical Passwords based on Users’ Sociocultural Experiences: New Challenges and

Opportunities. Adaptive and Personalized Privacy and Security Workshop (APPS 2019), UMAP

(Adjunct Publication), 199-202. doi: 10.1145/3314183.3324966

Belk, M., Fidas,C., Pitsillides. A. (2019). Flexpass: Symbiosis of seamless user authentication

schemes in Iot. In Extended Abstracts of the (CHI 2019). doi: 10.1145/3290607.3312951

Hadjidemetriou, G., Belk, M., Fidas, C., Pitsillides, A. (2019). Picture passwords in mixed reality:

Implementation and evaluation (2019). ACM SIGCHI Human Factors in Computing Systems (CHI

2019), ACM Press. doi: 10.1145/3290607.3313076

64

APPENDIX B – Prototype Design of the User Interfaces

In this section, we provide prototypes of the main User Interfaces (UI) of the final version of the user

authentication system according to User Experience (UX) principles, heuristics and trends. Aiming to

build an easy to use and usable user authentication system that can be deployed on heterogenous

devices, fundamental UX principles were considered for the design of the UI interfaces. Focus will be

given on using a simple language for communicating information and feedback to the end-users,

avoiding technical terms. The UIs have been designed focusing on functional and hedonic aspects.

UI of the FlexPass Homepage and Demonstration Page

Figure 40. Homepage screen introducing the FlexPass paradigm.

Figure 41. Demonstration page in which users can familiarize with the graphical password creation in

the FlexPass system.

65

UI of the System Administrator’s Page

Figure 42. System administrator’s login page.

Figure 43. Administrator’s user account creation page in which system administrators create new

accounts for end-users of their organization and their corresponding role (i.e., patient, medical staff,

system administrator).

66

Figure 44. End-users can contact helpdesk and request from system administrators to get a new

account verification code on their email. Accordingly, administrators can use the above UI to send an

account verification code to a particular end-user’s email.

Figure 45. System administrators can send a verification code to an end-user’s email. Accordingly,

the end-user can use the code received in their email during account verification.

67

Figure 46. System administrators can send a reset code to an end-user’s email. Accordingly, the end-

user can use the code received in their email during reset password of their account.

UI of the User Account Registration Page

Figure 47. User account registration page. Once a user account has been created by the system

administrator, an email is sent to the end-user along with an activation page in which the user is

redirected to start creating his/her password.

68

UI of the Graphical Password Creation Page

Figure 48. Image selection for graphical password creation. This page illustrates a set of images

illustrating content that is highly relevant to the users’ everyday activities and experiences within their

healthcare environments. End-users select their preferred image, which is used to create their

graphical password.

Figure 49. Graphical password creation. End-users create their graphical password by creating a set

of secret gestures on the image (gestures can be a combination of tabs, lines and circles).

69

UI of the Textual Password Creation Page

Figure 50. Passphrase creation page. End-users can optionally create a textual passphrase as an

alternative type for authentication by reflecting their secret used in the graphical password creation,

which can then be used to switch between types of passwords (graphical vs. textual) during login.

UI of the Two-Factor Authentication Activation Page

Figure 51. Two-factor authentication activation page. In order to add an additional factor for

authentication, end-users can setup two-factor authentication by downloading and installing a mobile

application on their smartphone that has been developed for this purpose. The smartphone’s mobile

application can then be used as a second factor for authentication during login.

70

Figure 52. QR code for enrolling the user’s smartphone device for two-factor authentication.

UI of the User Login Page

Figure 53. Sign in page based on the end-user’s username.

71

Figure 54. Sign in page in which the users select their preferred authentication type (graphical or

textual).

Figure 55. User graphical password login page. End-users enter their graphical password by creating

gestures on the image that were setup during the graphical password creation phase.

72

Figure 56. User textual password login page for end-users that have selected the textual password

type to login.

UI of the Two-Factor Authentication Login Page

Figure 57. Two-factor authentication with push notification in which a push notification is sent to the

end-user’s mobile application for approval.

73

Figure 58. Two-factor authentication with a Time-based One-Time Password. The end-user provides

a one-time password code that can be found on the smartphone’s mobile application.

Figure 59. End-users can request a reset code in case they forgot their password. The reset code will

be sent in their associated email.

74

UI of the Mobile Application for Two-Factor Authentication

Figure 60. User account creation and enrolment of the end-user’s device for two-factor

authentication.

75

Figure 61. Enrolment with QR code or enrollment code. In case the user selects the QR code option,

the mobile application is ready to scan the QR code that is illustrated on the end-user’s Web-based

registration system of FlexPass. In case the user selects the enrollment code option, the user has to

enter the secret code that is also available on the end-user’s Web-based registration system of

FlexPass.

76

Figure 62. Time-based One-Time Password on the end-user’s smartphone mobile application that is

automatically reset every 30 seconds. The one-time password can be used by the user during two-

factor authentication login.

77

Figure 63. Push notification for two-factor authentication approval to login.

78

Figure 64. Two-factor authentication approval page. The user either approves or rejects the push

notification of the login attempt.

79

Figure 65. Notification after the user accepts the push notification.

80

Figure 66. End-users can remove the second factor for authentication if they wish.

81

APPENDIX C – RESTful Application Programming Interface

This section lists all the endpoints of the final version of the user authentication system. Note that this

section provides all the successful scenarios and their respective responses (i.e., 200, 201). The full

list of responses (including for e.g., 400 – Bad Request; 401 – Unauthorized; 500 – Internal Server

Error, etc.), is available at the Serums’ development and testing server.

Base url: https://authentication.serums.cs.st-andrews.ac.uk/ua

Demo: https://authentication.serums.cs.st-andrews.ac.uk/ua/demo

Documentation: https://authentication.serums.cs.st-andrews.ac.uk/ua/doc

Create Admin API Token

Description: Creates an expiring API token that must be used by the web application to
authorize the requests to the secured endpoints

Endpoint /create_api_token/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
web_key * string (Web key) [1 .. 500] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)

resource_expires_in_sec float (The expiration time in seconds)

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/create_api_token/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\":
\"admin@test.com\", \"organization\": \"USTAN\", \"web_key\":
\"6HRrEPetK6UadiSnmtHFLJmnw5CN1Hi9su9LQvpF7peR8hBuOa\"}"

Response
Schema application/json
Description Expiring API Token has been created successfully. The value is returned in

resource_str and expires in resource_expires_in_sec seconds.
Status Code 201
Body {

 "message": "Expiring API Token has been created successfully. The value
is returned in `resource_str` and expires in `resource_expires_in_sec`
seconds.",
 "resource_name": "token",
 "resource_str": " 68b9d94424b118c6d3606320d20da2ac8721c297",
 "resource_expires_in_sec": 601126.755196}

82

Register Serums User

Description: Creates a new Serums user instance

Endpoint /register_user/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Token: <Expiring API Token>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
role * string (Role) Enum ["HOSPITAL_ADMIN", "MEDICAL_STAFF", "PATIENT"]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_int integer (An integer value associated with the resource_name)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/register_user/" -H "accept: application/json" -H
"Authorization: Token 68b9d94424b118c6d3606320d20da2ac8721c297"
-H "Content-Type: application/json" -d "{ \"username\":
\"test_patient@st-andrews.ac.uk\", \"organization\": \"USTAN\",
\"role\": \"PATIENT\"}"

Response
Schema application/json
Description User has been created successfully. The value is returned in

resource_int.
Status Code 201
Body {

 "message": "User has been created successfully. The value is returned
in `resource_int`.",
 "resource_name": "user",
 "resource_int": 371
}

Check Username

Description: Checks whether the provided username can be activated or not based on the
provided verification code

Endpoint /check_username/
Method POST
Headers

accept application/json

Content-Type application/json

83

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
verification_code * string (Verification code) [1 .. 50] characters

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_username/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"verification_code\":
\"30ad3f1839e2478cad17d42fc02aa6bc\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Graphical Password

Description: Sets the graphical password data for the provided user

Endpoint /set_graphical_password/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
graphical_password * string (Graphical password) [1 .. 200] characters
time_started_creation * Integer (Time started creation) [0 .. 9223372036854776000]

time_finished_creation * Integer (Time finished creation) [0 .. 9223372036854776000]

time_first_gesture_started * Integer (Time first gesture started) [0 .. 9223372036854776000]

time_first_gesture_fin * Integer (Time first gesture finished) [0.. 9223372036854776000]

time_second_gesture_started * Integer (Time second gesture started) [0.. 9223372036854776000]

time_second_gesture_fin * Integer (Time second gesture finished) [0 .. 9223372036854776000]

time_third_gesture_started * Integer (Time third gesture started) [0 .. 9223372036854776000]

time_third_gesture_fin * Integer (Time third gesture finished) [0 .. 9223372036854776000]

total_time_creation * Integer (Total time creation) [0 .. 9223372036854776000]

total_time_creation_with_confirm
*

Integer (Total time creation with confirm) [0 .. 9223372036854776000
]

total_time_first * Integer (Total time first gesture) [0 .. 9223372036854776000]

total_time_second * Integer (Total time second gesture) [0 .. 9223372036854776000]

total_time_third * Integer (Total time third gesture) [0 .. 9223372036854776000]

84

total_failed_attempts * Integer (Total failed attempts) [0 .. 9223372036854776000]

total_restart_attempts * Integer (Total restart attempts) [0 .. 9223372036854776000]

total_time_creation_task * Integer (Total time creation task) [0 .. 9223372036854776000]

timestamp_page_load * Integer (Timestamp page load) [0 .. 9223372036854776000]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_graphical_password/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\",
\"graphical_password\": \"#1|T|55,29#2|T|67,22#3|T|93,47\",
\"time_started_creation\": 195, \"time_finished_creation\": 13244,
\"time_first_gesture_started\": 6598, \"time_first_gesture_fin\":
7451, \"time_second_gesture_started\": 8536,
\"time_second_gesture_fin\": 9758, \"time_third_gesture_started\":
11724, \"time_third_gesture_fin\": 12782, \"total_time_creation\":
6184, \"total_time_creation_with_confirm\": 9315,
\"total_time_first\": 853, \"total_time_second\": 1222,
\"total_time_third\": 1058, \"total_failed_attempts\": 0,
\"total_restart_attempts\": 0, \"total_time_creation_task\": 14894,
\"timestamp_page_load\": 1650548204}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Retrieve Graphical Info

Description: Retrieves the graphical information (image_id and image_type)

Endpoint /retrieve_graphical_info/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
image_id integer (The ID of the image)
image_type string (The type of the image)

85

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_graphical_info/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "image",
 "image_id": 1,
 "image_type": "retrospective"
}

Create JWT

Description: Creates a JSON Web Token if the provided credentials are correct

Endpoint /create_jwt/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) non-empty
password * string (Password) non-empty
login_type * string (The type of login) Enum ["TEXT", "GRAPHICAL"]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj object (A dictionary that contains the JWT in the form of key-value

pairs. The key access is a string that corresponds to the JWT access
token and the key refresh is a string that corresponds to the JWT
refresh token.)

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/create_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\":
\"test_patient@st-andrews.ac.uk\", \"password\":
\"#1|T|55,29#2|T|67,22#3|T|93,47\", \"login_type\":
\"GRAPHICAL\"}"

Response
Schema application/json
Description JSON Web Token has been created successfully. The value is returned

in resource_obj.

86

Status Code 201
Body {

 "message": "JSON Web Token has been created successfully. The
value is returned in `resource_obj`.",
 "resource_name": "jwt",
 "resource_obj": {
 "access":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNz
IiwiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4Y
WU4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXN
BdXRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVz
dF9wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6Wy
JQQVRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlc
HROYW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMud
WsvIn0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0",
 "refresh":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmV
zaCIsImV4cCI6MTY4MjA4NDk0NSwianRpIjoiY2IyNTUwZWVkNmM5ND
YwZjk0OTY4ZjQ3ZGI3OTM4NTAiLCJ1c2VySUQiOjM3MSwiaXNzIjoiU2Vy
dW1zQXV0aGVudGljYXRpb24iLCJpYXQiOjE2NTA1NDg5NDUsInN1YiI6In
Rlc3RfcGF0aWVudEBzdC1hbmRyZXdzLmFjLnVrIiwiZ3JvdXBJRHMiOlsiUE
FUSUVOVCJdLCJvcmdJRCI6IlVTVEFOIiwiZGVwdElEIjpudWxsLCJkZXB0Tm
FtZSI6bnVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkIjoiaH
R0cHM6Ly9zaGNzLnNlcnVtcy5jcy5zdC1hbmRyZXdzLmFjLnVrLyJ9.SO5Y
VEQtBl4-KZGTTjDsV-ognylun93VWJjRC5rF3cE"
 }
}

Set Graphical Info

Description: Sets the image_id and the image_type for the user

Endpoint /set_graphical_info/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

image_type * string (Image type) [1 .. 13] characters
image_id * integer
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_graphical_info/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi

87

wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzd
F9wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJ
QQVRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlc
HROYW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMud
WsvIn0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H
"Content-Type: application/json" -d "{ \"image_type\":
\"retrospective\", \"image_id\": 1}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Passphrase

Description: Sets the single_secret passphrase for the provided user

Endpoint /set_passphrase/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

single_secret * string (Single secret) [1 .. 500] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_passphrase/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzd
F9wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJ
QQVRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlc
HROYW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMud
WsvIn0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H
"Content-Type: application/json" -d "{ \"single_secret\": \"The day I
had lunch at the hospital\"}"

Response

88

Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Second Factor

Description: Sets the second_factor for the user

Endpoint /set_second_factor/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

second_factor * string (The type of login) Enum ["MOBILE", "TOTP"]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_second_factor/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzd
F9wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJ
QQVRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlc
HROYW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMud
WsvIn0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H
"Content-Type: application/json" -d "{ \"second_factor\":
\"MOBILE\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

89

Check Passphrase Set

Description: Checks whether the passphrase was set or not for the provided username

Endpoint /check_passphrase_set/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False.)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_passphrase_set/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "passphrase",
 "resource_already_activated": true
}

Refresh JWT

Description: Uses the longer-lived refresh token to obtain another access token

Endpoint /refresh_jwt/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

refresh * string (Refresh) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
Example Call
Request

90

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/refresh_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"refresh\":
\"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcm
VzaCIsImV4cCI6MTY4MjA4NDk0NSwianRpIjoiY2IyNTUwZWVkNmM5ND
YwZjk0OTY4ZjQ3ZGI3OTM4NTAiLCJ1c2VySUQiOjM3MSwiaXNzIjoiU2Vy
dW1zQXV0aGVudGljYXRpb24iLCJpYXQiOjE2NTA1NDg5NDUsInN1YiI6InR
lc3RfcGF0aWVudEBzdC1hbmRyZXdzLmFjLnVrIiwiZ3JvdXBJRHMiOlsiUEF
USUVOVCJdLCJvcmdJRCI6IlVTVEFOIiwiZGVwdElEIjpudWxsLCJkZXB0TmF
tZSI6bnVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkIjoiaHR0
cHM6Ly9zaGNzLnNlcnVtcy5jcy5zdC1hbmRyZXdzLmFjLnVrLyJ9.SO5YVEQ
tBl4-KZGTTjDsV-ognylun93VWJjRC5rF3cE\"}"

Response
Schema application/json
Description JSON Web Token has been created successfully. The value is returned in

resource_str.
Status Code 201
Body {

 "message": "JSON Web Token has been created",
 "resource_name": "jwt",
 "resource_str":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzI
iwiZXhwIjoxNjUzMTQxNDQ2LCJqdGkiOiI1MjkwYTlmNDg3ZTU0NDk4YjB
mNmIxZTcwOTAxNTBlNSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXR
oZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9wY
XRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJ
RU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW
1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.c
N25G4kb-Nycl0HVct4h5bZVlwbmB2BnGM8T5KcWi98"
}

Check Second Factor Set

Description: Checks whether the second factor was set or not by the user

Endpoint /check_second_factor_set/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_second_factor_set/" -H "accept:

91

application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "second_factor",
 "resource_str": "MOBILE"
}

Store Graphical Login Attempt

Description: Stores the graphical login attempt

Endpoint /store_graphical_login_attempt/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) non-empty
total_failed_attempts * integer (Total failed attempts) [0 .. 2147483647]
is_reset * boolean (Is reset)
is_reset_from_main_page * boolean (Is reset from main page)
total_time_until_submit * integer (Total time until submit) [0 .. 9223372036854776000]
total_time_until_successful_login
*

integer (Total time until successful login) [0 .. 9223372036854776000]

time_interaction_started * integer (Time interaction started) [0 .. 9223372036854776000]
total_time_since_page_load * integer (Total time since page load) [0 .. 9223372036854776000]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/store_graphical_login_attempt/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi

92

wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"total_failed_attempts\": 0, \"is_reset\": false,
\"is_reset_from_main_page\": false, \"total_time_until_submit\":
16792, \"total_time_until_successful_login\": 1254,
\"time_interaction_started\": 108, \"total_time_since_page_load\":
22755}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "GRAPHICAL"
}

Store Passphrase Login Attempt

Description: Stores the passphrase login attempt

Endpoint /store_passphrase_login_attempt/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) non-empty
is_failed_attempt * boolean (Is failed attempt)
is_reset * boolean (Is reset)
total_time_until_submit * integer (Total time until submit) [-9223372036854776000 ..

9223372036854776000]
total_time_until_submit_since_p
age_load *

integer (Total time until submit since page load) [-
9223372036854776000 .. 9223372036854776000]

time_interaction_started * integer (Time interaction started) [-9223372036854776000 ..
9223372036854776000]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/store_passphrase_login_attempt/" -H "accept:
application/json" -H "Authorization: Bearer

93

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"is_failed_attempt\": false, \"is_reset\": false,
\"total_time_until_submit\": 4568,
\"total_time_until_submit_since_page_load\": 12786,
\"time_interaction_started\": 1208}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "TEXTUAL"
}

Request Device Enroll

Description: Returns an activation code as a QR code PNG image for the user

Endpoint /request_device_enroll/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_qr object (A dictionary that contains information about the QR code in the

form of key-value pairs. The key img_byte_str is a base64 encoded
string that corresponds to the image bytes. The key qr_img_id is a string
that corresponds to the image id. The key enroll_text_id is a string that
corresponds to the enroll id as text.)

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_device_enroll/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO

94

YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description QR code has been created successfully. The value is returned in

resource_obj_qr.
Status Code 201
Body {

 "message": "QR code has been created successfully. The value is
returned in `resource_obj_qr`.",
 "resource_name": "QR",
 "resource_obj_qr": {
 "qr_img_byte_str":
"iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/ToAAADiUlEQ
VR4nO2cW4rcSBBFT0wK6jMLegG9FGlnwyxpdiAtxQswZH4aJMIf+ZBUb
WMw1e7q8o0PgZAOkiDIuPFImfN7tvzzmyCIFClSpEiRIkU+HmnVBsxsALK
ZTWxmE8By3cym3O6aPvhtRT4Wibu7M7q7ewruc9xPwd1XgOCMKfjh5vl
zfafI9ydzX1+yGcsVWF7dWezijGkzn6GtUnd6psjnIIebc4OwGmyDjwlsTC8
Ul7rfM0U+OTmmzSAP3XM2e/dninwKMrr7DLBcgwPBKe4Tiwhym9jl0X2
eKfKpyMXMzK7AmOrB/v1yccgDNuUBYCtp2ce/rciHIoseOjQ8lmvAYa2H5
fWb0VakOz1T5HORh9y+LkHuNZaNvtIOLdIRlduLvLXiQ8QVn+NaFE+pFJX
6UArlanGfLo/kQyK7VR/qVhej7lKJg0YCgnxI5Nm6HtoGiAkjrgPkK0as5SLIY
bWih/LLR76tyEckux5a8RnqoUQwgvscqx5iTO2C9JDIk1UfSntUC11TH4Nc
86YVxTKRZ6seAfhM7bkWf6k52C62W1tWPiTyZLumLu5TvaSGthbB2tVZ
mlrkGzusQ56gZfl99iOFVjhKofiQ9JDIsx1iVPGcpnj2GmNdkYpu0jok8tZ8t5l
94emN16KMqjySHhL5U3IxM5tibcofsvw5D1UUzfd+psgnIXtuH2oeP6bj6n
PQ2UVOJ5AeEnm2YxjrAqiq696HTX10KLpimcgb2zX1Tchqxer9FFC/TORb
O9WHel/D+4jHIVdr7RD5kMiT3daH9pRsHx3qt4DqQyJvrfTtjfh1gOgY1LF
GXwycfC0HRgcjpjb0+Lm+U+T7kW32I18c8svqy+sKsA0/+iGIk4c2lP+5vlPk
HyHNXlf2bUE2xRWza3CbCO7/lXH8TXulRZ6txTIwyFYClY1fLm4QnGXaDO
K3spvDxv/Dah/3tiIfkTz2OmqGdiwl1kIjp1PlZSJPtuf21PGz47DHPnRWEjb1
XEX+jCwpfKo1xqaMzEq/jGxW+x+ATfd5psgnIQ+zsHWl8b4FKPWaUV+q+
sys1iGR3W58qDbN0mmPIvRJWdUYRf6SLH/7iCvl10OLDcWRbKJeqBXrh3
hbkQ9AvvkPWm2L7dP5XSi1LYuKZSJPVv9htZSiT8DGGQw2q/sW6YXpfHE
Dyi2f7TtFvh9p+se5SJEiRYoUKfIvJ78D2wJlcBrhmcIAAAAASUVORK5CYII="
,
 "qr_img_id": "dae881b5c555464192bb11ec5e0410af",
 "enroll_text_id": "BdEpTU"
 }
}

Poll Enroll Status

Description: Polls the qr_img_id to detect whether the device was enrolled or not

Endpoint /poll_enroll_status/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

95

qr_img_id * string (QR img id) [1 .. 50] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_enroll_status/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"qr_img_id\":
\"dae881b5c555464192bb11ec5e0410af\"}"

Response
Schema application/json
Description Device is already activated
Status Code 200
Body {

 "message": "Device is already activated",
 "resource_name": "device",
 "resource_already_activated": false
}

Check Device Enrolled

Description: Checks whether the device is already enrolled or not

Endpoint /check_device_enrolled/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_device_enrolled/" -H "accept:

96

application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description Device is already activated
Status Code 200
Body {

 "message": "Device is already activated",
 "resource_name": "device",
 "resource_already_activated": false
}

Enroll Device

Description: Enrolls the device to the user’s account

Endpoint /enroll_device/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_name * string (Device name) non-empty
device_id * string (Device id) non-empty
enroll_id * string (Enroll id) non-empty
operation * string (Operation) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_device object (A dictionary that contains information about the enrolled device

in the form of key-value pairs. The key totp is a string that will be used
for the time-based one-time passwords. The key username is a string
that corresponds to the username set for the enrolled device. The key
jwt_access is a string that corresponds to the JWT access token that will
be saved on the device. The key jwt_refresh is a string that corresponds
to the JWT refresh token that will be saved on the device.)

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/enroll_device/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"device_name\": \"Xioami Mi
9T Pro\", \"device_id\": \"123456\", \"enroll_id\": \"eaa45e70-0fa5-

97

11eb-a8c0-0242ac170005\", \"operation\": \"QR\"}"

Response
Schema application/json
Description Device has been created successfully. The value is returned in

resource_obj_device.
Status Code 201
Body {

 "message": "Device has been created successfully. The value is
returned in `resource_obj_device`.",
 "resource_name": "device",
 "resource_obj_device": {
 "totp": "d65c042c9b034080",
 "username": "test_patient@st-andrews.ac.uk",
 "jwt_access":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzI
iwiZXhwIjoxNjUzMTQ1OTc5LCJqdGkiOiI5MGUwY2JmMzdjOTQ0ZjJiOTJi
YWM1NDNhMjVhYmEzNCIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdX
RoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU1Mzk3OSwic3ViIjoidGVzdF9w
YXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQV
RJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROY
W1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJod
HRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn
0.X3r9l_Plh_y_VI9kjeFIkohDuygNiwW_Wl-nMpuXJH0",
 "jwt_refresh":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmV
zaCIsImV4cCI6MTY4MjA4OTk3OSwianRpIjoiZTY2YjkxMjlkNDBiNGNjOTk
yMzI1NWY5ODk3ZDQ1YjciLCJ1c2VySUQiOjM3MSwiaXNzIjoiU2VydW1z
QXV0aGVudGljYXRpb24iLCJpYXQiOjE2NTA1NTM5NzksInN1YiI6InRlc3Rfc
GF0aWVudEBzdC1hbmRyZXdzLmFjLnVrIiwiZ3JvdXBJRHMiOlsiUEFUSUV
OVCJdLCJvcmdJRCI6IlVTVEFOIiwiZGVwdElEIjpudWxsLCJkZXB0TmFtZSI6b
nVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkIjoiaHR0cHM6
Ly9zaGNzLnNlcnVtcy5jcy5zdC1hbmRyZXdzLmFjLnVrLyJ9.wK1vM0es9Aai
2siGfyFiJiisGSIF_wdjL-99N350iIE"
 }
}

Map FCM to Device

Description: Maps the Firebase Cloud Messaging token to the user's device.

Endpoint /map_fcm_to_device/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_id * string (Device id) non-empty
fcm_token * string (Fcm token) [1 .. 255] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)

98

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/map_fcm_to_device/" -H "accept: application/json"
-H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQ1OTc5LCJqdGkiOiI5MGUwY2JmMzdjOTQ0ZjJiOTJiY
WM1NDNhMjVhYmEzNCIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXR
oZW50aWNhdGlvbiIsImlhdCI6MTY1MDU1Mzk3OSwic3ViIjoidGVzdF9wY
XRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJ
RU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW
1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.X
3r9l_Plh_y_VI9kjeFIkohDuygNiwW_Wl-nMpuXJH0" -H "Content-Type:
application/json" -d "{ \"device_id\": \"123456\", \"fcm_token\":
\"d0hnVaEW7AI:APA91bE0Hw-u78mkhvr0Vk61Rs3zop5Q2J8UL1xvFT-
qLbqeT6xE48ulq_R_ZDmNnEfUHW4UAlrt6xg1IiVF-
4DP1QzfMNRNF3sLNvcJsQEFRQ7iehAxud1QgRkA9cJQgQz0RSmDkInV\"}
"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success"
}

Submit TOTP

Description: Checks whether the provided TOTP code is verified or not

Endpoint /submit_totp/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
totp_token * string (Totp code) [1 .. 6] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_bool boolean (Returns True/False that is associated with the resource_name)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/submit_totp/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi

99

wiZXhwIjoxNjUzMTQ1OTc5LCJqdGkiOiI5MGUwY2JmMzdjOTQ0ZjJiOTJiY
WM1NDNhMjVhYmEzNCIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXR
oZW50aWNhdGlvbiIsImlhdCI6MTY1MDU1Mzk3OSwic3ViIjoidGVzdF9wY
XRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJ
RU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW
1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.X
3r9l_Plh_y_VI9kjeFIkohDuygNiwW_Wl-nMpuXJH0" -H "Content-Type:
application/json" -d "{ \"totp_code\": \"187542\"}"

Response
Schema application/json
Description Authentication response
Status Code 200
Body {

 "message": "Authentication response",
 "resource_name": "Authentication response",
 "resource_bool": false
}

Send Push Notification

Description: Sends a push notification to the enrolled device associated with the user

Endpoint /send_push_notification/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/send_push_notification/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description Success

100

Status Code 200
Body {

 "message": "Success",
 "resource_name": "authentication_id",
 "resource_str": "1ae4d876-0fab-11eb-a8c0-0242ac170005"
}

Poll Auth Push Status

Description: Polls to detect whether the response received from user's device for the
authentication_id is True or False.

Endpoint /poll_auth_push_status/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
authentication_id * string (Authentication id) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_bool boolean (Returns True/False that is associated with the resource_name)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_auth_push_status/" -H "accept: application/json"
-H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwi
ZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YWU4M
zNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXRoZW
50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9wYXRpZ
W50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJRU5UIl
0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW1lIjpudW
xsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHRwczovL3N
oY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.qXgQp0Aqhh
K0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-Type:
application/json" -d "{ \"authentication_id\": \"1ae4d876-0fab-11eb-
a8c0-0242ac170005\"}"

Response
Schema application/json
Description Authentication response
Status Code 200
Body {

 "message": "Authentication response",
 "resource_name": "Authentication response",
 "resource_bool": false
}

101

Two Factor Response

Description: Receives the response from the second factor attempt initiated from the push
notification

Endpoint /two_factor_response/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_id * string (Device id) non-empty
response * boolean (Response)
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/two_factor_response/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwi
ZXhwIjoxNjUzMTQ1OTc5LCJqdGkiOiI5MGUwY2JmMzdjOTQ0ZjJiOTJiYWM
1NDNhMjVhYmEzNCIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXRoZW5
0aWNhdGlvbiIsImlhdCI6MTY1MDU1Mzk3OSwic3ViIjoidGVzdF9wYXRpZW
50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJRU5UIl0s
Im9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW1lIjpudWxs
LCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHRwczovL3NoY
3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.X3r9l_Plh_y_VI9
kjeFIkohDuygNiwW_Wl-nMpuXJH0" -H "Content-Type: application/json"
-d "{ \"device_id\": \"123456\", \"response\": true}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success"
}

Verify JWT

Description: Returns the JWT payload {userID, username, groupIDs, orgID, deptID} if the
JWT is successfully verified

Endpoint /verify_jwt/
Method POST
Headers

accept application/json

102

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
groupIDs Array of strings (The group IDs associated with the SERUMS userID)
orgID string (The organization ID associated with the SERUMS userID)
userID integer (The SERUMS userID)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/verify_jwt/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "userID": 371,
 "groupIDs": [
 "PATIENT"
],
 "orgID": "USTAN"
}

Check Reset Password

Description: Checks whether the provided username can be reset or not based on the
provided reset code

Endpoint /check_reset_password/
Method POST
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters

reset_code * string (Reset code) [1 .. 50] characters

Output Parameters Type (Description)
message string (A general message description)

103

organization string (The organization name)

resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_reset_password/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\", \"reset_code\":
\"d15dd2d79b694cc4bc6b493815a41db2\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "organization": "USTAN",
 "resource_name": "user",
}

Map User Info

Description: Maps the identity within the organization to the existing user information

Endpoint /map_user_info/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
identity * string (Identity) [1 .. 200] characters

organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/map_user_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI

104

n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"identity\": \"123456789\",
\"organization\": \"USTAN\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user",
}

Poll Graphical Status

Description: Polls to detect whether the graphical password creation status has finished or
not

Endpoint /poll_graphical_status/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
is_pending boolean (Returns True/False that is associated with the task status)

resource_bool Returns True/False that is associated with the resource_name

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_graphical_status/" -H "accept: application/json"
-H "Content-Type: application/json" -d "{}"

Response
Schema application/json
Description Graphical status poll returned successfully

Status Code 200
Body {

 "message": "Success",
 "resource_name": "Graphical status",
 "is_pending": false,
 "resource_bool": true
}

Remove Second Factor

Description: Removes the second factor for authentication (e.g., paired mobile app) from
the user's account

105

Endpoint /remove_second_factor/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/remove_second_factor/" -H "accept: application/json"
-H "Content-Type: application/json" -d "{}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success"
}

Request Account Verification

Description: Request a verification code for account activation via email

Endpoint /request_account_verification/
Method POST
Headers

accept application/json

Content-Type application/json

Authorization Token: <Expiring API Token>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False)

Example Call
Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_account_verification/" -H "accept:
application/json" -H "Authorization: Token
68b9d94424b118c6d3606320d20da2ac8721c297" -H "Content-Type:
application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"organization\": \"USTAN\"}"

Response

106

Schema application/json
Description User is already activated

Status Code 200
Body {

 "message": "Account verification code email sent successfully",
 "resource_name": "user",
 "resource_already_activated": true
}

Request Reset Verification

Description: Requests a reset token for password reset via email

Endpoint /request_reset_verification/
Method GET
Headers

accept application/json

Content-Type application/json

Authorization Token: <Expiring API Token>

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

Schema application/json

Curl command curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_reset_verification/" -H "accept:
application/json" -H "Authorization: Token
68b9d94424b118c6d3606320d20da2ac8721c297" -H "Content-Type:
application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"organization\": \"USTAN\"}"

Response
Schema application/json
Description Success

Status Code 200
Body {

 "message": "Account verification code email sent successfully",
 "resource_name": "password_reset_code"
}

Retrieve ID Info

Description: Retrieves the information about the identity of the user

Endpoint /retrieve_id_info/
Method GET

107

Headers

accept application/json

Content-Type application/json

Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_id object (A dictionary that contains information about the identities of the

user in the form of key-value pairs. Each key corresponds to the
organization (string) and the associated value corresponds to the identity
(string) possessed within the organization.)

Example Call
Request

Schema application/json

Curl command curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_id_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwi
ZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YWU4M
zNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBdXRoZW
50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9wYXRpZ
W50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJRU5UIl
0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHROYW1lIjpudW
xsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJodHRwczovL3N
oY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvIn0.qXgQp0Aqhh
K0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-Type:
application/json" -d "{}"

Response
Schema application/json
Description The values of identities are returned in resource_obj_id.

Status Code 200
Body {

 "message": "Success",
 "resource_name": "user",
 "resource_obj_id": {
 "USTAN": "123456789"
 }
}

Retrieve User Info

Description: Retrieves the information about the user (i.e., Serums ID, date of birth, etc.)
from a specific organization (e.g., patient ID, staff ID, etc.).

Endpoint /retrieve_user_info/
Method GET
Headers

accept application/json

Content-Type application/json

Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]

108

identity * string (Identity) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
Authorization Bearer: <JWT>

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_info object (A dictionary that contains information about user ID from a

specific organization (e.g., patient ID, staff ID etc) in the form of key-
value pairs. The key serums_id is an integer that corresponds to the
associated Serums user ID. The key dob is a date object (None if not
available) that corresponds to the date of birth of the associated user
ID.)

Example Call
Request

Schema application/json

Curl command curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_user_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjUzMTQwOTQ1LCJqdGkiOiI5MzE4NjNjZTQyNjU0NmE4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCJpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbiIsImlhdCI6MTY1MDU0ODk0NSwic3ViIjoidGVzdF9
wYXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQ
VRJRU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJkZXB0SUQiOm51bGwsImRlcHRO
YW1lIjpudWxsLCJzdGFmZklEIjpudWxsLCJuYW1lIjpudWxsLCJhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnN0LWFuZHJld3MuYWMudWsvI
n0.qXgQp0AqhhK0ob97WX69kjaIZmCxCc0X-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"identity\": \"123456789\",
\"organization\": \"USTAN\"}"

Response
Schema application/json
Description The values of identities are returned in resource_obj_id.

Status Code 200
Body {

 "message": "Success",
 "resource_name": "user",
 "resource_obj_info": {
 "serums_id": "371",
 "dob": ""
 }
}

APPENDIX D – Database Design (Entity-Relationship Diagram)

