BB Ref. Ares(2022)3350980 - 30/04/2022

Serums

Project no. 826278

SERUMS

Research & Innovation Action (RIA)
SECURING MEDICAL DATA IN SMART-PATIENT HEALTHCARE SYSTEMS

Report on Final User Authentication System
D5.4

Due date of deliverable: 30th April 2022

Start date of project: 1% January 2019

Type: Deliverable
WP number: WP5

Responsible Institution: UCY
Editor and editor’s address: Marios Belk (belk@cs.ucy.ac.cy)
Partners Contributing: UCL, SOPRA, IBM, ZMC, FCRB

Reviewers:
Matthew Banton (USTAN)
Thais Webber (USTAN)

Version 1.0

Project co-funded by the European Commission within the Horizon H2020 Programme

Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Release History

Release No. | Date Author(s) Release Description/Changes made
VO.1 01/11/2021 Marios Belk (UCY), Defined TOC and added initial Executive
Andreas Pitsillides (UCY) Summary

V0.2 01/11/2021 Marios Belk (UCY), Added final general architecture and
Christos Fidas (UCY), extended description on use-case
Andreas Pitsillides (UCY) scenarios
V0.3 12/12/2021 Marios Belk (UCY), Added description of new APIs
Christos Fidas (UCY),
Argyris Constantinides (UCY),
Andreas Pitsillides (UCY)
V0.4 15/02/2022 Elias Athanasopoulos (UCY), Added credential hardening mechanism
Argyris Constantinides (UCY)
VOS5 07/03/2022 Argyris Constantinides (UCY) | Added new front-end designs
Added description on password strength
meter
Added description on image analysis tool
V0.6 21/04/2022 Eduard Baranov (UCL) Added the verification of the
authentication properties
V0.7 24/04/2022 Marios Belk (UCY), Beta version of the deliverable for internal
Argyris Constantinides (UCY), | review
Christos Fidas (UCY),
Andreas Pitsillides (UCY)
V0.8 28/04/2022 Matthew Banton (USTAN) Version after partners’ comments
Thais Webber (USTAN)
V0.9 29/04/2022 Marios Belk (UCY), Pre-final version for final check
Argyris Constantinides (UCY),
Christos Fidas (UCY),
Andreas Pitsillides (UCY)
V1.0 29/04/2022 Marios Belk (UCY), Release candidate

Christos Fidas (UCY),
Andreas Pitsillides (UCY)

SERUMS Consortium

Partner 1

University of St Andrews

Contact Person

Name: Juliana Bowles

Email: jkfb@st-andrews.ac.uk

Partner 2

Zuyderland Medisch Centrum

Contact Person

Name: Larissa Haen-Jansen

Email: la.jansen@zuyderland.nl

Partner 3

Accenture B.V.

Contact Person

Name: Bram Elshof

Email: bram.elshof@accenture.com

Partner 4

IBM lsrael Science & Technology Ltd.

Contact Person

Name: Michael Vinov

Email: vinov@il.ibm.com

Partner 5

Sopra-Steria

Contact Person

Name: Andre Vermeulen

Email: andreas.vermeulen@soprasteria.com

Partner 6

Université Catholique de Louvain

Contact Person

Name: Axel Legay

Email: axel.legay@uclouvain.be

Partner 7

Software Competence Centre Hagenberg

Contact Person

Name: Michael Rossbory

Email: michael.rossbory@scch.at

Partner 8

University of Cyprus

Contact Person

Andreas Pitsillides

Email: andreas.pitsillides@ucy.ac.cy

Partner 9

Fundacié Clinic per a la Recerca Biomédica

Contact Person

Name: Santiago Iriso

Email: siriso@clinic.cat

Partner 10

University of Dundee

Contact Person

Name: Vladimir Janjic

Email: vjanjic001@dundee.ac.uk

mailto:jkfb@st-andrews.ac.uk
mailto:la.jansen@zuyderland.nl
mailto:bram.elshof@accenture.com
mailto:vinov@il.ibm.com
mailto:andreas.vermeulen@soprasteria.com
mailto:axel.legay@uclouvain.be
mailto:michael.rossbory@scch.at
mailto:andreas.pitsillides@ucy.ac.cy
mailto:siriso@clinic.cat
mailto:vjanjic001@dundee.ac.uk

Table of Contents

EXECUTIVE SUMMARY L..coiiiiiiiiiiiiiiiieiiiniiiiisneiiisiiiisiiiissiiineiiisseiimmeiisseiismeismeimseimses 8
1 INTRODUCTION ...ooeiiineiiiuniiiinneiiinniiissneiissneiisssiiisseiiisseiissseisssssissssesssssesssssesssssesssssesssssesssnseas 9
1.1 ROLE OF THE DELIVERABLEuteiiuuieiinnesinnessnnessnnessssnsssssesssssesssssessssnesssssesssssesssssesssssesssssesssnnens 9
1.2 RELATIONSHIP TO OTHER SERUMS DELIVERABLESeeeiiuneisssneisssneisssnessssnessssnessssnessssesssssesssssesssnnens 9
1.3 STRUCTURE OF THIS DOCUMENT.....cciiiuiiiiiuieiinnisinnisssnnissssessssneissssessssnesssssssssssesssssesssssessssnesssnnens 9

2 A FLEXIBLE AND PERSONALIZED LOCIMETRIC USER AUTHENTICATION

PARADIGM IN HEALTHCARE ..itiittittteeiieeerenessrenssenessrsasssssssssnssssssssenssssssssssssssssssssnsssenssssas 10
2.1 RESEARCH IMIOTIVATION...cuteutuerererenracrensessenssassassassassassossassassassassassassassassassassassnssassassassassassnnes 10
2.2 CONCEPTUAL DESIGN BASED ON THE DUAL CODING THEORY ..cuveurerrenrenranrenrerenrensensacsassansassassassansanes 11
2.3 FLEXPASS AUTHENTICATION PARADIGM....c.cueteurerenranrenraneonrasrensansonsasassassassassassassassassassassassansanss 12
3 GENERAL ARCHITECTURE OF THE USER AUTHENTICATION SYSTEMcccecuuueue. 13
3.1 BACKEND USER AUTHENTICATION SYSTEM u.uutuutetrerenracrensastonsatassassessassassassassassassassassassassnssassnssans 14
3.2 FRONT-END WEB-BASED GRAPHICAL AND TEXTUAL PASSWORD SYSTEM ..ceuterierenrecreracransasensnssasansanse 14
3.3 MULTI-FACTOR AUTHENTICATION SYSTEM .uutuuietrenienraciensaiensatassastessassessassassassassassassassassnssassnssanse 15
4 CREDENTIAL HARDENING....eetutteetteetreeseasseassesssesssssssssssasssssssasssssssssssssssssssssssssasssssssasssasss 16
4.1 IIVIPLEMENTATION uutuuteutettentesrestesrastessestessestessasssssastessasssssassesssssessssssssssssssasssssassassnssassnssassnssns 16
4.2 STORING TEXTUAL AND GRAPHICAL PASSWORDS ...cuieuieiieieiieniasiesaciessesiessassessassassassassassassnssessnsses 20
4.3 PASSWORD STRENGTH IVIETER «.eutetienienieienieiensatestastassastessastessastassassassassesssssassessassassassnssassnssns 23
4.4 INTELLIGENT IMAGE ANALYSIS FOR QUANTIFICATION OF GRAPHICAL PASSWORD STRENGTH ...cuvevieerenreenes 25
5 USE-CASE SCENARIOS ..iuituiteueieuereuerenssanssessasseasseassssssssssssssssssasssasssssssssssssssssssssssssssssssssasss 27
5.1 ADMINISTRATOR LOGIN u.tuuiutiuiieiiaiieiiecietieciesrasiessastessastessastassastessassessassessassassassessassassnssassnssane 27
5.2 ADMINISTRATOR CREATES AND ACTIVATES A USER ACCOUNT .. cuvutererererererecacacacacasasasassssssssasasesasases 28
5.3 ADMINISTRATOR SENDS AN ACTIVATION CODE TO USER FOR ACCOUNT VERIFICATION ..ccceuverrenrenrenrennanee 28
5.4 ADMINISTRATOR SENDS A RESET CODE TO USER FOR ACCOUNT RESET .euveurerrenrenrenrenrerenrereneaeansansanes 29
5.5 END-USER ACTIVATES ACCOUNT ..cututerunrerrecrenranressastessassessassassasssssassassassassassassasssssassassassassassans 30
5.6 CREATION OF THE GRAPHICAL AND TEXTUAL PASSWORDcctuitettenreteratensesrensessensassassassassassansassanss 31
5.7 ENABLE TWO-FACTOR AUTHENTICATION TYPE AND PAIR MOBILE DEVICE ...c.ceeterrerenreirenrereneeneeneensenes 33
5.8 TwO-FACTOR AUTHENTICATION LOGIN USING THE IMOBILE APPLICATION ...cveureerenrenrerensansencansansansanes 34
5.9 UNPAIR MOBILE DEVICE FROM TWO-FACTOR AUTHENTICATION «.ceureurerrenrenrerenrenrensasnssassassassassassanes 36
6 VERIFICATION OF THE AUTHENTICATION SYSTEM ..iecuirteeereeeseannsseessreaseseasssenassesnns 37
6.1 STATISTICAL IMIODEL CHECKING «.vuueeurenrenrenreseensassessassessassessassassassessassassassasssssassassassnssassnssassnssanee 37
6.2 PROPERTIES VERIFICATION «utuutuuteseetessactensestessassessessessassessassessassessassassassessassassassassassassnssassnssanee 44
(o3 T S U774 | N 45

6.4 FUZZING CHECKS .eeuuuieunirenniieuniieneiieesiieasireesireasssenssiteesresssiensssensssmasssmesssmessssensssensssnnsssssassrenss 47

T IMPLICATIONS ...iicieiiiiniiiiniiiiniiiiniiiineiiineiiineiiisneiiisneiiisneiissneiissseessssesssssesssssesssssessnsenans 53
7.1 FLEXPASS APPLICABILITY IN THE HEALTHCARE DOMAIN......ccoiiiuiiiiniiiinieninnensnnesnnessneesssnnesssnesnns 53
7.2 FLEXPASS PERSONALIZATION WORKFLOW AND RECOMMENDATION RULEScceiueeiinnininnisinnnessnnnenans 54
8 CONCLUSIONS....ciciutiiintiiineiiineiiineiiisseiiisneiiineisineisisneisssseissssesssssesssssesssssesssssesssssesssssessns 56
REFERENCES.....cccciitiiiutiiiinniiisneeissneiissneiesneiesnnesssssesssnsensssssessnsesssssssssnssssnsesssnsesssssssssnsesssnsens 58
ABBREVIATIONS......cccoieiiiuniiiinneiiinieiiinneieisiiiiissiiisseiiisseiiisseiesssessssnessssesssssesssnsesssssesssssessnnsens 61

APPENDIX A - CONTRIBUTIONS TO RESEARCH PUBLICATIONS BASED ON

ACTIVITIES WITHIN WORK PACKAGE 5....cciiieiiiiniiiineiiineiiineiiineiiiseeiinseiineessnseinnees 62
APPENDIX B — PROTOTYPE DESIGN OF THE USER INTERFACES.......ccccviiniiiinnniienennn. 64
Ul OF THE FLEXPASS HOMEPAGE AND DEMONSTRATION PAGEcuvtieiiinnieiissinnnenisisnnnesssssneesssssnnessssssnees 64
Ul OF THE SYSTEM ADMINISTRATOR’S PAGEcceiiiiuniiiiiinnneiiinienissnnnesssssnssssssssseessssssnessssssssesssssssees 65
Ul OF THE USER ACCOUNT REGISTRATION PAGEccumieiiinnneeiiiinnnenisinnnesssssnsessssssssessssssnsesssssssssssssssees 67
Ul OF THE GRAPHICAL PASSWORD CREATION PAGE......ccceiiiuumieiiiiunnenisinnnesssssnsenissnssesssssnessssssnsesssssssees 68
Ul OF THE TEXTUAL PASSWORD CREATION PAGEcuutieiiiiunneeiisinnnenisssniesssssnnesisssnsessssssnessssssssessssssnees 69
Ul OF THE TWO-FACTOR AUTHENTICATION ACTIVATION PAGE......cccutiiiinnieiisinnnenisisnnenssssneesssssssesssssssees 69
Ul OF THE USER LOGIN PAGEcuuuiiiiiiniiiiiinininisinniesssssnsssssssssssssssssessssssssessssssssesssssssessssssnssssssssnnes 70
Ul OF THE TWO-FACTOR AUTHENTICATION LOGIN PAGEcuuiiiiiiuniiiiiinnieinssinnensssnssesssssnesssssnsssssssssnes 72
Ul OF THE MOBILE APPLICATION FOR TWO-FACTOR AUTHENTICATIONcueieeeiiunnnensssnneensssssnsesssssnssnsssssnnes 74
APPENDIX C — RESTFUL APPLICATION PROGRAMMING INTERFACE.........ccccneeneeee 81
CREATE ADMIN APITOKEN ...cettieiiunteriiisnneeiisssntesessnnesssssnsessssssssesssssssssssssssssssssnsessssssnssssssssnssssssnns 81
REGISTER SERUMS USERuveeiiiiunnienessnnesisssstesissinnesssssssesssssssesssssssessssssssssssssssessssssnsessssssnsssssssnnees 82
CHECK USERNAIMEuuveriiiuneenisssnntesesssneesissssssesesssssessssssssessssssssesssssssssssssssssssssssnsessssssnssssssssnsesssnns 82
SET GRAPHICAL PASSWORDceetiiesunreeiessnnenssssnnssssssssssssssssssesssssssessssssssessssssssesssssasassssssnsessssssnsesssnns 83
RETRIEVE GRAPHICAL INFO...cciiiiuunieiiiinieeisintesissnnnesssasessssassessssansesssssassessssnssssssssnsessssssnsesssssnnnes 84
012 L e 85
SET GRAPHICAL INFO «.eeeiiiiiiuneiiiinnitniiinnnessssunssssssnsesssssssesssssssessssssssessssssnsessssassssssssnssssssssnsesssnnns 86
SET PASSPHRASE....cccesurrersssuneerssssntessssssnnesssssssssssssssessssssssesessssssssssssssessssssnsesssssanssssssssssssssssnsenssnns 87
SET SECOND FACTOR....cutiiiiuuneeiiinnttiiisantessssssssssssssessssansesssssasssssssnssssssssnsesssssnsassssssnssssssssnnenssnnns 88
CHECK PASSPHRASE SET ...uuuuuieiiiinnieiiiinnieiiiissnieissssneeissssssesissssssesssssssssssssssssesssssssesssssssssssssssssensssnns 89
REFRESHJWT .ttt snne s csnns s san e s sas s s s an s s s ass s s e a s s e s a s e e s aa s e e e ana e e s annn s 89
CHECK SECOND FACTOR SET ..ceiiiiiunieiiiiunnieiisiniieiisssnnesssssnsesisssssesssssssssssssssssesssssssessssssssssssssssensssnns 90
STORE GRAPHICAL LOGIN ATTEMPT...uuitiiiunneessssnnenssssneeisssssnessssssssesssssssssissssssesssssssssssssssssssssssssessssnns 91
STORE PASSPHRASE LOGIN ATTEMPT ..cceiiiuunieiisssneeissssneeisssssnessssssssesssssssssissssssessssssssessssssssssssssssensssnns 92
REQUEST DEVICE ENROLL...cceiiiiunnieniiinnneiiiisnneiiiisniessssssneesssssnessssssssesssssssessssssssesssssssessssssssssssssssnes 93
POLL ENROLL STATUS....ccccuutieiiinnnienisisnieeisiisnnesisssnsessssssssessssssseesssssssesssssssssssssssssesssssssessssssnsssssssssnes 94
CHECK DEVICE ENROLLEDuuuieiiinnnieiissnnieisisnnseisssssneessssssesissssssesssssssssssssssssesssssssesssssssssssssssssensssnns 95
ENROLL DEVICEuuueeiiiiineieiiiinttisssineesisssants et e s s ssnee s s s sana e s e s sann s s s s s sna e e s s s annasssssnnesssssnnnessssnnns 96

IMIAP FCIMI TO DEVICE c.uuuiiteeueiierenniriennsiirienssiireesesisrienssesseesssssstesssesstssssssseesssssstesssssssesssessesnssessesnsses 97

LU 1 0 I e 98
SEND PUSH NOTIFICATION ...uuueeiiiiiunnieiisnnnesssssnsssissssesissssssesssssssessssssssssssssssesssssssssssssssssssssssssessssnns 99
POLL AUTH PUSH STATUS ...etiiiiiunieeiiiinneesiiisniesssssnnessssssssssissssssesssssssssssssssssssssssnesssssssssssssssssesssnns 100
TWO FACTOR RESPONSEcciicutttiissnnteesesinneesissssttessssssnessssssnsssssssssnessssssnsssssssnsessssssnssssssssnsssssssnnees 101
VERIFY JWT oottt nee s aae s s san s s s s aa e s s s s ane s s s s s aa e e s e s sna e s s s s snaessessnnnesessnnnnens 101
CHECK RESET PASSWORDuuvetiieunterisssnnneessssnnessssssnnsssssssnsesssssnnsssssssssesssssssssssssssnsssssssnssssssssnsesssnns 102
IMAP USER INFO ...cuueieiiiiintiiiisnnteensnneessnssnns s s sanee s s s san e s s e s s an e e s s s s san e s s s s snnesssssnnasesssannssssssnnaesennnns 103
POLL GRAPHICAL STATUS ...uuttiiisinnteessssnnesisssssttssssssnnessssssssssssssnsesssssssssssssssssssssssnssssssssnssssssssssssessns 104
REMOVE SECOND FACTOR....ciiiiiiutttiiiiinnttiicsntttiessntessssssnesssssansessssssnessssssnsessssssnnsssssssnnssssssnnsesensnns 104
REQUEST ACCOUNT VERIFICATION ..eeeiiiunerrisssnnnesssssnnessssssssssssssnssssssssnsssssssssssssssssssssssssnssssssssssssesnns 105
REQUEST RESET VERIFICATION ...cuuuteeiissuneensssssnnesssssnnessssssnssssssssnsessssssnsssssssnssssssssnssssssssnsssssssssassannns 106
RETRIEVE ID INFO «.uueeeiiiiintiiiinttttencnet s incnen s saeee s sane s s san s s s s ssnn e s s s s sana e s s s s sann e s e s ssannssssssnnaesannnns 106
RETRIEVE USER INFO...ciiiiutiiiiiintitiiinineeiisnntesssssneesssssaneessssansesssssanessssssnssssessnnsssssssnssssssnssesesnnns 107
APPENDIX D — DATABASE DESIGN (ENTITY-RELATIONSHIP DIAGRAM)cceuuueeee 109

Executive Summary

Securing Medical Data in Smart Patient-Centric Healthcare Systems (Serums) is a research project
supported by the European Commission (EC) under the Horizon 2020 program. This is the fourth and
final deliverable of Work Package 5: “Authentication and Trust”. The leader of this work package is
UCY, with involvement from the following partners: UCL, SOPRA, IBM, ZMC, FCRB. The
objective of this work package is focused on designing and developing a user-centric authentication
system aiming to deliver a secure, personalized and usable authentication mechanism to each user’s
preference and interaction device, in order to preserve security and improve usability. The primary
goals are to: i) provide high levels of security to confirm the identity of each user and accordingly
authorize access to certain parts of personal and/or medical data in the system; and ii) improve the
usability levels of the user authentication mechanisms by increasing memorability of selected secrets
and task execution efficiency and effectiveness.

This deliverable, entitled “D5.4. Report on Final User Authentication System” reports the
implementation and verification of the final user authentication system. For the implementation of the
Serums’ user authentication system, a User-Centered Design methodology has been adopted for
developing and finalizing the user authentication scheme through multiple iterations (three prototypes
of the system have been released throughout the course of the project; initial, refined, final software)
that will be used for evaluation studies. This deliverable reports on the final software of the user
authentication scheme.

Given that the outcome of this work package is a result of an iterative development process that
refined the final Serums user authentication system throughout the course of the Serums project, for
completeness, we include existing stable designs, modules, data-flow diagrams, scenarios, endpoints,
and mechanisms from previous deliverables of this work package (Deliverable 5.2; Deliverable 5.3).

1 Introduction

1.1 Role of the Deliverable

The role of this deliverable is to report the design and development of the final software of the user
authentication scheme. Specifically, it reports: i) the improved and final user authentication paradigm
based on a novel retrospective and flexible approach in graphical and textual passwords; ii) the final
architecture of the user authentication scheme; iii) the architectural design and development details of
the credential hardening mechanism; iv) the sequence diagrams of the final authentication use-case
scenarios; v) the description of the final Application Programming Interface (API) and database
design of the user authentication scheme; vi) the final front-end design of the user interfaces in the
authentication system; and vii) final results of the verification of the user authentication system. The
outcome of the user authentication system constituted the basis for the evaluation of the third and final
Proof of Concept (PoC3) of Serums.

1.2 Relationship to Other Serums Deliverables

Deliverable Relation

D2.6: Final Software for Storage, Access, The user authentication API of D5.4 is used as input in the
Blockchain and Metadata Extraction for Smart | final software of the Smart Patient Health Records
Patient Health Records

DA4.3: Report on Final Data Fabrication and Characteristics of the updated database schema of D5.4 is

Semantic-Preserving Encryption used as input for data fabrication and semantic-preserving
encryption

D6.3: Report on Final Smart Health Centre The outcome of D5.4 is used as input for the final version of

System Software the integrated smart healthcare system software

D7.6: Report on Final Use Cases and The final version of the user authentication scheme of D5.4

Evaluation is used in the context of the evaluation studies of PoC3

D7.7: Report on Technical Roadmap for Outcomes of D5.4 is used as a basis for further elaborating

Serums Technology ideas and areas for improvement for the user authentication

system as part of the Serums technical roadmap

1.3 Structure of this Document

The rest of the document is structured as follows: Chapter 2 describes the Serums authentication
paradigm. Chapter 3 describes the general architecture of the user authentication system, including
details on new and extended modules, such as a password strength meter and semantic image analysis
tool. Chapter 4 provides implementation details of the credential hardening mechanism. Chapter 5
describes the sequence diagrams of the final user authentication scenarios. Chapter 6 describes the
results of the user authentication component verification. Chapter 7 discusses implications and the
applicability of the proposed authentication paradigm within healthcare environments. Chapter 8
concludes the deliverable including limitations of this research and future work. APPENDIX A lists
the research publications in which activities of this work package have contributed to. APPENDIX B
presents the final front-end design of the user authentication screens. APPENDIX C and D
respectively describe the final Application Programming Interface of the user authentication system,
and the design of the database.

2 A Flexible and Personalized Locimetric User Authentication
Paradigm in Healthcare

In this section we describe the proposal of the user authentication method, coined FlexPass, which is
based on a novel “Single-Secret Two Reflections” (SS2R) authentication paradigm. We first provide
details on the underlying theory and conceptual design of the approach.

2.1 Research Motivation

Healthcare organizations still rely on traditional knowledge-based authentication approaches, and
specifically, on textual passwords and/or location-aware approaches (e.g., Radio Frequency
Identification - RFID). This is based on several reasons, i.e., due to increased implementation and
maintenance costs, due to immaturity of new authentication approaches, as well as known security
and privacy issues of new user authentication paradigms (e.g., biometrics) (Fidas et al., 2021), which
negatively affect wide adoption of such technologies (Mason et al., 2020). Simultaneously, healthcare
organizations’ experts are aware that textual passwords negatively affect usability and security aspects
due to complex policies, and therefore seek for novel and easy-to-adapt knowledge-based user
authentication approaches as alternative solutions in order to avoid affecting the users’ familiarity and
existing practice.

Furthermore, the literature reveals that: a) a plethora of user authentication methods (knowledge-,
token-, biometric-based) have been introduced for healthcare environments, each one having its own
strengths and weaknesses with regards to security, privacy and user experience; b) it is estimated that
knowledge-based authentication mechanisms will continue to prevail in the next decades (Leon and
Bostjan, 2019), even in combination with other approaches (e.g., token-based) or as fallback
mechanisms, hence, new approaches need to partially rely on existing textual password approaches in
order to support the technology transition of users; ¢) user authentication in healthcare environments
entails a mixture of unique constraints and challenges related to the location and context in which
interaction takes place (Constantinides et al., 2021; 2020; Eikey et al., 2015); and d) evidence has
shown that user preference and task performance varies depending on the user (e.g., age, abilities) and
the context of use (e.g., interaction device, screen size), suggesting that any specific solution might
not please everyone (Mare et al., 2016).

Bearing in mind that user authentication in healthcare environments is performed by users with
varying profiles, in different contexts of use and on multiple heterogeneous devices, this work
investigates whether end-users would benefit from a flexible and personalized user authentication
solution that would adapt and personalize different authentication mechanisms (graphical and textual)
depending on their context of interaction, aiming to achieve a viable balance between security and
usability. Our work is primarily driven by our vision to combine graphical and textual password
mechanisms based on a new “Single-Secret Two Reflections” (SS2R) user authentication paradigm,
which allows us to move from current generic “one-size-fits-all” authentication systems towards
flexible, user-adaptable and personalized authentication systems. The aim is to provide a viable and
flexible authentication solution, by following state-of-the-art practices in the healthcare domain, and
applicable within current healthcare organizations.

10

2.2 Conceptual Design based on the Dual Coding Theory

User Scenario: From Location-based Memories towards Location-aware Passwords. Consider a
scenario (Figure 1) in which a patient, Emma, visits her hospital for her weekly checkup at her
doctor. Emma drives through the entrance of the hospital and then parks her car. She further walks
from the car park through the hospital’s garden, enters the building and goes to the reception hall. She
then registers at the reception hall in which she confirms her appointment with her doctor. She is then
asked to wait for fifteen minutes until her appointment. During these fifteen minutes, Emma walks to
the hospital’s cafeteria and orders a coffee and croissant until her appointment. Emma completes the
checkup with her doctor, receives a prescription of medication and then leaves the hospital and drives
back home.

))) O g Ug | Patients have experiences within their hospital and :
Patients visit their hospital i create real-life memories, e.g., they visitthe cafeteria, sit :

and create real-life memories w@ {in the hospital's garden, wait in the reception hall, etc.

| FlexPass deploys personalized images depicting

Patients create a ’ i sceneries with which the patient had experiences with
assword-protected account ™~ Ez i
P P of their hospital %; ey i FlexPass also allows patients to create a textual
P - : password, reflecting their experience-based secretin a

i textual representation

: During login, patients may choose their preferred :
i authentication type (graphical vs. textual), and then enter :
: their secret to login to their healthcare system ;

Patients login to their
hospital’s account
to access their health records

Figure 1. Use-case scenario of FlexPass.

During Emma’s visit at the hospital, she created several real-life memories within the hospital (e.g.,
walk through the garden, visit at the cafeteria, appointment with the doctor). Based on the dual coding
theory (Paivio, 2006; Sternberg, 2003), Emma encrypted a series of visual and verbal stimuli within
her long-term memory (Atkinson and Shiffrin, 1968; Baddeley, 1990), and more specifically with the
episodic, semantic and autobiographical memories (Tulving, 2002; Squire, 1992; Williams et al.,
2008), which entail information about certain events experienced in an individual’s lifetime and the
corresponding semantic information describing these events. Furthermore, according to the dual
coding theory, the human brain consists of a visual cognitive sub-system, which is utilized by the
human brain during processing, representation and recall of imagery information, as well as a verbal
cognitive sub-system, which is utilized by the human brain during processing, representation and
recall of verbal information (Paivio, 2006). For example, information such as the word “cappuccino”
is represented in the human mind as a visual representation of a cappuccino coffee cup, as well as the
word “cappuccino”. During recall, individuals retrieve and process both representations
simultaneously, or separately. Figure 2 depicts the underlying idea of FlexPass.

11

Real-life Repeated Experiences in User Authentication '
Healthcare Environments Objectives

. i
% 0 o O = | . . Mirror prior experiences in long-term
was B O

memory as graphical and textual passwords
- to improve security and experience

Stored in long-term memory as a visual and
verbal representation based on the Dual

Coding Theory Graphical and Textual Reflections

Figure 2. From location-based memories towards location-aware and flexible passwords.
2.3 FlexPass Authentication Paradigm

FlexPass aims to leverage on the dual coding theory based on a novel “Single-Secret Two
Reflections” authentication paradigm. This enables patients to create a single conceptual secret
leveraging upon their personal location-based memories they have built through their interactions in
certain locations within the hospitals, and further reflect the secret on a graphical and/or textual
password key. For creating the graphical password key, FlexPass presents location-aware images that
depict image content of a certain location of a hospital, in which the patient had prior interaction with.
In addition, FlexPass provides an additional option to the patient to create a textual password key that
may be then utilized interchangeably with the graphical password based on user’s preference. Our
solution intentionally includes a textual password as an option to avoid changing the current state-of-
the-art practice in the healthcare domain, and a method in which users are familiar with. Hence, we
anticipate that FlexPass will be more easily transferable from the current state-of-the-art towards the
new suggested approach, providing the option to users to switch to their preferred authentication type
(graphical or textual). Figure 3 illustrates the conceptual design of FlexPass.

| Sociocultural Experiences Long-term Memory . Cognitive Processing

i| Events & Situations } Episodic & Semantic Information | [Visual & Verbal
i ‘ L flow

__________________________________ — B l _________________________ e —— ‘

Single User-selected Conceptual Secret

“The cappuccino | had at the hospital”

@J @J @j “CappuccinolDrankinTheHospitalSmokingArea”

Visual Representation Verbal Representation

l

Complementary Authentication Types

Graphical Password Textual Password

Figure 3. Conceptual design of FlexPass.

12

Graphical Passwords. The graphical password mechanism is based on cued-recall graphical
authentication mechanisms (Biddle et al., 2012), which ask users to draw secret gestures on a
background image that acts as a cue. For its implementation, we follow design and development
guidelines of Microsoft’s Picture Gesture Authentication (PGA)™ mechanism (Johnson et al., 2014),
introduced in Windows 8 (also available in most recent versions, e.g., Microsoft Windows 10 and 11),
which allows users to draw three types of gestures on the background image: taps (clicks), lines and
circles. Free line gestures are automatically converted into one of the three allowed gestures.

Textual Passwords. FlexPass follows state-of-the-art security metrics and authentication policies
with regards to the implementation of textual passwords (Komanduri et al., 2011; Burr et al., 2006;
Belk et al., 2019). The textual password keys rely on a basic 16-character password policy, allowing
the creation of dictionary words with no composition requirements, which is more usable and as
secure as traditional complex 8-character policies (Komanduri et al., 2011) (the National Institute of
Standards and Technology (NIST) predicts that both policies generate 30 bits of security entropy
(Burr et al., 2006)).

In this context, FlexPass allows users to create a secret graphical and/or a textual password. During
graphical password composition, FlexPass deploys images depicting popular sceneries of the hospital
(e.g., garden, reception hall, cafeteria, etc.). The user is asked to select an image of her preference and
then create a graphical password by drawing secret gestures on certain regions of the image based on
the experience she had with the depicted content in the image. For example, based on the
aforementioned user scenario, a conceptual secret derived from Emma’s episodic memory and
experiences at the hospital would be: “the cappuccino I drank at the hospital”. Emma would reflect
this secret on the graphical password by selecting for example a coffee cup and the exact table she sat
for having her coffee in the hospital’s cafeteria. As a next step, FlexPass also allows users to create a
textual password by asking the patient to reflect the conceptual-based graphical secret as a textual
representation by articulating the secret, e.g., the textual version of the secret would be
“CappuccinolDrankInTheHospitalsCafeteria”.

Hence, the “Single-Secret Two Reflections” paradigm extends existing works in knowledge-based
user authentication based on the dual coding theory aiming to: a) enhance security by enabling users
to select regions on an image that are familiar to the users and not to the attacker; b) to enhance
memorability through ownership, and prior experience and knowledge of each single user; and c) to
support user authentication adaptability since users can choose their preferred way to login based on
their needs and context of use. For example, users that are on the move might prefer to login through
touch-based graphical password input on the tablet device vs. users that are in the office might prefer
to login through a textual password input on the conventional desktop computer.

3 General Architecture of the User Authentication System

In this section, we present the architectural design of the developed user authentication system.
Figure 4 illustrates the high-level architectural design of the final user authentication system, which
also includes the password-hardening component (please see Section 4). The user authentication
system is hosted at the University of St. Andrews premises on a CentOS Linux version 7 machine
with 47GB of RAM and 2T of disk space.

13

3.1 Backend user authentication system

The backend of the user authentication system is developed in Python 3.7.4 using the Django REST
Web development framework, which is a powerful and flexible toolkit for building Web Application
Programming Interfaces (APIs) in Python. The core component of the backend is the server-side Web
API, which is a programmatic interface consisting of publicly exposed endpoints to a defined request—
response message system, expressed in JavaScript Object Notation (JSON) format and exposed via
the Web by means of a Web server that is based on the Hypertext Transfer Protocol (HTTP).

For the deployment of the Django application, we use a modified Apache HTTP Server with an
extension of the mod_ssl module for credential hardening, and mod_wsgi, which is an Apache module
that can host any Python Web Server Gateway Interface application. For certain heavy and time-
consuming tasks, such as, storing of graphical passwords, ideally, we would like the request and
response cycle to be fast, otherwise we would leave the user waiting for rather too long. Even worse,
the Web server can only serve a certain number of users at a time. So, if this process is slow, it can
limit the number of pages our application can serve at a time. To solve this problem, Celery is used,
which is an asynchronous task queue based on distributed message passing. Celery is not used
through the whole project, but only for specific tasks that are time-consuming. The idea here is to
respond to the user as quickly as possible, pass the time-consuming tasks to the queue so to be
executed in the background, and always keep the server ready to respond to new requests. Celery
additionally requires an external solution for sending and receiving messages. For this purpose,
RabbitMQ is used, which is an open-source message-broker software.

For the storage of the data, PostgreSQL is used, which is an open-source Relational Database
Management System commonly used within Django applications. Finally, the whole user
authentication system is packaged and runs as a lightweight, portable, and self-sufficient container
through Docker (version: 19.03.13, API version: 1.40), which is a set of software products that use
virtualization at the operating system level to deliver software in packages called containers.

3.2 Front-end Web-based graphical and textual password system

The FlexPass front-end is developed using the Django’s template language, which contains variables
that get replaced with values when the template file, e.g., Hypertext Mark-up Language (HTML) file
is rendered, and tags that control the logic of the template.

HTML is the primary mark-up language for the creation of Webpages on the World Wide Web. It
provides a means to describe the structure of text-based information in a document through annotation
of certain text as headings, paragraphs, etc., and to supplement that text with interactive forms,
embedded images, and other objects. The main purpose of HTML is to display and format content,
allowing very limited interaction with the Webpage. HTML also describes to some extent the
semantics of a document and can include embedded scripting language code for manipulating at run-
time the HTML elements of a document and the behavior of the Webpage. FlexPass front-end utilizes
the latest version of HTMLD5, given its extended capabilities and to conform to the latest standards of
today’s HTML Web browsers.

To provide styling to the HTML elements, Cascade Style Sheets (CSS) are utilized, which provide a
means for defining how HTML elements should be displayed. FlexPass front-end utilizes the latest
version of CSS3 to take advantage of current state-of-the-art styling features and improvements for

14

enhancing the Web presentation capabilities, as well as to conform to the latest World Wide Web
Consortium design standards.

Today’s Web-sites typically combine HTML, CSS, and client-side scripting for creating interactive
pages. The most applied client-side scripting language on the World Wide Web (WWW) currently is
JavaScript. Hence, FlexPass front-end utilizes JavaScript for the following purposes: i) for allowing
users to create graphical passwords in an HTML canvas element that loads the background image; ii)
for handling users’ interactions (e.g., time to create password, time to login); and iii) for
communicating and exchanging data with the FlexPass back-end asynchronously without reloading
the Webpage through Asynchronous JavaScript and XML.

The front-end designs of the Web application are available in three languages: English, Dutch, and
Catalan.

3.3 Multi-factor authentication system

As an additional layer for security, we have implemented a smartphone application, available in both
Android and iOS, using Flutter (https://flutter.dev). We coined the smartphone application as Serums
Authenticator. APPENDIX B illustrates all the front-end user interface designs of the smartphone
application. Serums Authenticator follows state-of-the-art practices with regards to multi-factor
authentication solutions, i.e., users can use their smartphone device as a second factor for
authentication in which they can approve a successful login either through approval of a push
notification and/or a time-based one-time passcode (TOTP). It implements the following
functionalities: i) users initially pair their device with their Serums account using a QR code or a six-
digit code; ii) users may use the TOTP displayed on the end-user’s smartphone mobile application
that is automatically reset every 30 seconds, aiming to approve their login; iii) users may also approve
their login through an easy-to-use push notification; and iv) users have the option to remove the
second factor for authentication if they wish.

The front-end designs of the smartphone application are available in three languages: English, Dutch,
and Catalan.

AP call

Web-based

FlexPass o . '
i i i Credential : | WSGI .
AP| response | | Hardening | i > Django REST

= e

AP call

Serums MFA ﬁ‘i
Authenticator ﬁ

APl response

| ‘ RabbitM '
Modified Apache abbithMQ Celery worker
HTTP Server processes

Task queue Il

RabbitMQ

Figure 4. High-level architectural design and technologies used.

15

4 Credential Hardening

In this section, we present how Serums employs additional countermeasures in order to defend against
attacks that are based on cracking offline leaked credentials. We further provide details on a password
strength meter for assisting users in creating stronger passwords, and an intelligent image analysis
tool for further assisting the quantification of graphical password strength.

4.1 Implementation

Recall that Serums secures a text-based password using a Message Authentication Code (MAC),
instead of a cryptographic hash function (please refer to Serums Deliverables D5.2 and D5.3). In
particular, Hash Message Authentication Code (HMAC) is used as provided by OpenSSL (Open
Secure Sockets Layer); the aforementioned implementation uses internally SHA-256 (Secure Hash
Algorithm) for hashing. The HMAC uses bits from the private key of the server to compute the
cryptographic hash.

We have implemented the credential hardening mechanism by enhancing an Apache module,
therefore it can be instantly enabled to all Web applications that run over Apache. Alternatively, it is
straightforward to realize credential hardening to other Web infrastructures, so long as they support
TLS connections. We now expand on all Apache-based modifications and then on all Web application
modifications required for deploying credential hardening. Credential hardening builds on the existing
mod_ssl module by adding a new hook. This can be done by modifying mod_ssl.c, where all the
hooks needed to the Apache for serving TLS connections are set. Our hook is set as
APR HOOK FIRST and thus it is executed as soon as possible in the request pipeline. We depict
below the code excerpt where the hook is established.

#include "hasher.h"
static void ssl register hooks(apr pool t *p) {

ap_hook handler (hasher handler, NULL, NULL, APR HOOK FIRST);

Source Code. SSL register hook.

Moreover, we depict the core code of the entire credential hardening mechanism. Here, we reference
lines of code for each of the basic steps credential hardening does, but reading the code is not
necessary to understand the mechanics. The main handler of credential hardening does the following:

1. Declines any requests that are not local and that do not have arguments (i.e., no password);
(lines 2-5)

2. Checks that the connection uses TLS, and drops any non-encrypted one; (lines 9-10)

3. Reads the private key —used for TLS— from the SSL context and stores it to a buffer; if the
private key is not available declines the request; (lines 12-19)

4. Decodes the argument (i.e., password) from the request’s URL; if the plain password is not
correctly encoded, the request is declined; (lines 24-28)

5. Calls the HMAC function of the OpenSSL library with parameters: (a) the cryptographic
hashing function (SHA256); (b) the private key as the key for the computed HMAC; and (c)
the password to be hashed; (lines 30-34)

6. Returns the keyed digest to the client in the form of an encrypted HTTP response. (lines 35-
37)

16

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

int hasher handler (request rec *r) ({
if (strcmp (r->uri,"/hmac-service")==0 && r->args!=NULL &&
strcmp (ap_get remote host (r->connection, NULL,
REMOTE NAME, NULL),
"127.0.0.1")==0) {
char * key; server rec *s = r->server;
SSLSrvConfigRec *sc = mySrvConfig(s);
modssl ctx t *server = sc->server;
if (server == NULL || server->ssl ctx == NULL)
return DECLINED;
else {
EVP_PKEY * evp = SSL CTX getO_privatekey(server->ssl ctx);
if (evp) {
size t len = PRIVATE KEY SIZE; key = malloc(len);
FILE *stringFile = fmemopen (key, len, "w");
PEM write PrivateKey(stringFile, evp, NULL,
NULL, O, 0, NULL);
fclose (stringFile);
} else return DECLINED;
}
char * plainPassword = getPasswordFromArgs (r->args);
int rounds = getRoundsFromArgs (r->args);
// wrong password format
char * dec=malloc (sizeof (char) *strlen(plainPassword)+1);
if (plainPassword==NULL || decode (plainPassword, dec)<0) {
free(dec); free(key);
return DECLINED;
}
int rlen,i;
unsigned char * hashed = HMAC (EVP_sha256(),
key, strlen (key),
dec, strlen(dec), NULL, é&rlen);
for (i=1;i<rounds;i++)
h = HMAC(EVP_sha256(), key, strlen(key), h, rlen, NULL, &rlen);
for (1 = 0; 1 < rlen; i++) {
ap_rprintf(r, "%02X", h[i]);
}
free(key); free(dec); free(plainPassword); return OK;
}

return DECLINED;

Source Code. Implementation of credential hardening.

17

To integrate the modssl_hmac library into the containerized Django application, we had to build and
install from source the following: i) Apache HTTP server; ii) PHP; and iii) mod_wsgi for configuring
Django to run based on the modified Apache version that includes the credential hardening
component. Next, we present the script that builds and installs the aforementioned technologies, as

well as configures the Django Web application of the user authentication system.

#!/bin/bash
set -e
touch /var/modssl/.cert;

echo "Downloading and installing apache";

Install apache with mod ssl hmac
if [[-e /var/modssl/.cert 1] && [[! -e /var/modssl/.apache]]; then
cd /var/modssl;

rm -rf /var/modssl/httpd ;

if [[! -d /var/modssl/httpd]]; then
git clone --depth 1 --branch 2.4.41 https://github.com/apache/httpd.git;

sed -i '/#include "mod ssl.h"/a #include
/var/modssl/httpd/modules/ssl/mod_ssl.c;

sed -i '/ssl io filter register(p);/a ap_hook handler (hasher handler,
APR _HOOK_FIRST);' /var/modssl/httpd/modules/ssl/mod ssl.c;

"hasher.h"'

NULL,

NULL,

sed -i '/mod ssl.lo dnl/a hasher.lo dnl/' /var/modssl/httpd/modules/ssl/config.m4;

cp /var/modssl/lib/hasher.c /var/modssl/httpd/modules/ssl/hasher.c;
cp /var/modssl/lib/hasher.h /var/modssl/httpd/modules/ssl/hasher.h;
cd /var/modssl/httpd;

svn co http://svn.apache.org/repos/asf/apr/apr/trunk srclib/apr;
./buildconf;

chmod +x configure;

./configure --prefix=/usr/local/apache2;

cp /var/modssl/lib/hasher.c /var/modssl/httpd/modules/ssl/hasher.c;
cp /var/modssl/lib/hasher.h /var/modssl/httpd/modules/ssl/hasher.h;
cd /var/modssl/httpd;
make clean >> /var/modssl/.logs;
make >> /var/modssl/.logs;
make install >> /var/modssl/.logs;
touch /var/modssl/.apache;
fi
echo "Done apache";
echo "Downloading and installing php";

Install php

18

if [[-e /var/modssl/.apache]] && [[! -e /var/modssl/.php]1]; then
cd /var/modssl/;

if [[! -d /var/modssl/php-7.2.16 1]; then

wget -0 php.tar.gz https://github.com/php/web-php-distributions/raw/master/php-

7.2.16.tar.gz >> /var/modssl/.logs;
tar -zxvf php.tar.gz;
rm php.tar.gz;
fi
cd /var/modssl/php-7.2.16;

./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-curl --with-mysqgli
mbstring --with-gd --with-jpeg-dir=/usr/1ib64 --enable-opcache >> /var/modssl/.logs;

make clean >> /var/modssl/.logs;
make >> /var/modssl/.logs;
make install >> /var/modssl/.logs;
cd /var/modssl/;
touch /var/modssl/.php;
fi
echo "Done php";
echo "Downloading and installing mod wsgi for Django";
if [[! -e /var/modssl/.mod wsgi]]; then
cd /var/modssl/;
if [[! -d /var/modssl/mod wsgi-4.7.1]1]; then

wget https://github.com/GrahamDumpleton/mod wsgi/archive/4.7.1.tar.gz
/var/modssl/.logs;

tar xvfz 4.7.1l.tar.gz;
rm 4.7.1.tar.gz;
fi
cd mod wsgi-4.7.1/;
./configure --with-apxs=/usr/local/apache2/bin/apxs
make >> /var/modssl/.logs;
make install >> /var/modssl/.logs;
cd /var/modssl/;
touch /var/modssl/.mod wsgi;
fi
echo "Done mod wsgi";
echo "Applying apache configuration files";
Apply configuration files
if [[-e /var/modssl/.php 1] && [[! -e /var/modssl/.conf]]; then
cp /var/modssl/conf/httpd.conf /usr/local/apache2/conf/httpd.conf
cp /var/modssl/conf/httpd-ssl.conf /usr/local/apache2/conf/extra/httpd-ssl.conf
touch /var/modssl/.conf;

fi

--enable-

>>

19

if [[-e /var/modssl/.started]]; then
rm /var/modssl/.started;

fi

Start apache

echo "Start apache";

if [[-e /var/modssl/.conf]1; then
/usr/local/apache2/bin/apachectl start;
touch /var/modssl/.started;

fi

echo "Apache started";

echo "Container is ready";

cat;

Source Code. Integration of credential hardening.
4.2 Storing Textual and Graphical Passwords

Regarding the storage of the textual password, we initiate a request to the credential hardening
component, which converts the textual password string into a HMAC using the TLS key. The final
HMAC’ed textual password string is stored in the database.

With regards to the graphical password system, three types of gestures are allowed: taps (clicks), lines
and circles. Free line gestures are not permitted; hence, they are automatically converted into one of
the three permitted gestures.

To process the gestures, the mechanism creates a grid of the image containing 100 squares (segments)
on the longest side!, and then divides the shortest side by the same scale. Rounding is not applied to
any decimal segments and the mechanism allows 0.25 segments size overflow at the rightmost side of
the image. The approach of creating a grid of squares allows for storing the gestures based on their
segment position on the grid rather than the coordinates in pixels (Figure 5). The following data is
stored: for taps, the (x, y) coordinates of a point, for lines the (x, y) coordinates of the starting and
ending point, and for circles the (x, y) coordinates of the center, the radius and the directionality
(clockwise/counterclockwise).

The mechanism allows for a tolerance distance in terms of the coordinates on the grid (36 segments
around each initial selected segment are acceptable! (Katsini et al., 2018), thus, building a circle of 3
segments radius). This tolerance allows better accuracy of users’ selections during login. However,
there is no tolerance regarding ordering, type, directionality of the gestures. During the login, the
mechanism compares the entered password with the stored one and login will be considered
successful if (a) all three gestures (ordering, type, and directionality) match with the stored ones; and
(b) the tolerance distance between the entered gestures and the stored ones fit in the predefined
tolerance threshold.

! https://docs.microsoft.com/en-us/archive/blogs/b8/signing-in-with-a-picture-password

20

Figure 5. The graphical password mechanism creates a grid of the image containing 100 squares
(segments) on the longest side, and then divides the shortest side by the same scale.

Although the approach adopted by Microsoft’s PGA™ for storing the graphical passwords remains
undisclosed (Zhao et al., 2013), we follow state-of-the-art research on PGA for the scenario in which
all the passwords that fall into the vicinity (as defined by the threshold) of chosen passwords are
stored in a file with hashes on the server (Zhao et al., 2013). To be able to calculate the hash of the
graphical password and store it in the file, we first need to represent the graphical password as a
string. To do so, we use the following string representation for each gesture type:

Tap: "#N|T|x1,y1"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

T: The letter “T” refers to the gesture type tap (click).

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates.
X1: The x coordinate of the tap inside the image grid.

y1: The y coordinate of the tap inside the image grid.

Circle: "#N|C|x1,y1,r,c"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.
C: The letter “C” refers to the gesture type circle.

|: The second vertical bar separates the gesture type and the remaining data, i.e., (X1, y1) coordinates,
radius, and directionality.

X1: The x coordinate of the circle’s center inside the image grid.
y1: The y coordinate of the circle’s center inside the image grid.

21

r: The radius of the circle.

c: Boolean value that denotes whether the directionality is clockwise (True) or counter-clockwise
(False)

Line: "#N|C[x1,y1,x2,y2"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.
L: The letter “L” refers to the gesture type line.

|- The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates
and (x2, y2) coordinates.

X1: The x coordinate of the line’s starting point inside the image grid.
y1: The y coordinate of the line’s starting point inside the image grid.
X2: The x coordinate of the line’s ending point inside the image grid.

y2: The y coordinate of the line’s ending point inside the image grid.

Combinations based on the threshold. The final string representation of the graphical password is
the concatenation of the three strings, where each string refers to the corresponding gesture. Due to
the introduction of the tolerance, for each graphical password string we also compute all the possible
combinations that will match the initial graphical password string. After applying the tolerance to
each segment, we end up with the following combinations for each gesture type:

- Tap: A total of 4 combinations, which correspond to the tap’s (X, y) pairs of coordinates that
will match the initial graphical password string during the comparison.

- Circle: A total of 12 combinations (4 combinations for the center x 3 combinations for the
radius), which correspond to the circle’s center (x, y) pairs of coordinates combined with 3
radii (initial, increased, decreased) that will match the initial graphical password string during
the comparison.

- Line: A total of 16 combinations (4 combinations for the line’s starting point x 4
combinations for the line’s ending point), which correspond to the starting point’s (X, y) pairs
of coordinates combined with the ending point’s (X, y) pairs that will match the initial
graphical password string during the comparison.

Due to the differences in total combinations across gestures, and aiming to avoid revealing any
information about the gesture type, we take an extra step by generalizing to the most complex
combination, i.e., as in having 3 lines, which would yield 16° = 4096 combinations. Therefore, in case
of taps and circles, for the remaining combinations, we also generate dummy password string
combinations, so we always create the maximum number of 4096 combinations. To do so, we
generate the remaining dummy password strings as 50-character strings (Komanduri et al., 2011). The
50-character dummy password strings are generated by combining the following: i) a 32-character
lowercase hexadecimal string generated using Python’s uuid module (e.g., uuid4 function); and ii) a

22

18-character random string generated using Python’s secrets module (e.g., choice function, which
accepts as input a non-empty sequence consisting of ascii letters and digits, and returns a randomly-
chosen element). Finally, for each of the generated combination, we make a request to the credential
hardening component, which converts the password string into a Hash Message Authentication Code
using the TLS key. The final HMAC’ed graphical password string is stored in a file and contains all
the possible matching combinations for a particular user. The content of this file is used during the
login process, in which the input graphical password string is first converted to an HMAC via the
credential hardening component and is then compared to the HMACs contained in the file for
comparison. Below, we present an example of initiating a request to the credential hardening
component that generates the HMAC of all combinations of a graphical password.

def generate graphical password hashes (password data):
''"'" Generates all possible hash combinations that match the input password data.
Returns:
(list of str): A list that contains all the hashes
final combinations = []
first gesture items = password datal[O0]
second gesture items = password data[l]

third gesture items = password datal[2]

url = "https://127.0.0.1/hmac-service"

for gesture 1 in first gesture items:
for gesture 2 in second gesture items:

for gesture 3 in third gesture items:
password string = gesture 1 + gesture 2 + gesture 3
params = {

'password': password _string

}
r = requests.get (url, params=params)
final combinations.append(r.text)

return final combinations

graphical password hashes = generate graphical password hashes (password data)

Source Code. Request to the credential hardening component that generates the HMAC of all
combinations of a graphical password.

4.3 Password Strength Meter

Aiming to assist users in creating stronger passwords, we have implemented a password strength
meter, which provides a run-time estimation about the strength of the user-created graphical password
and textual password. Figure 6 illustrates the password strength meter of the graphical user
authentication system.

23

Step 2: Confirm your picture password

To confirm your secret picture password, please
repeat the 3 gestures.

Gesture:

Restart

Strength: Medium

Figure 6. Password strength meter of the graphical user authentication system.

For measuring the graphical password strength, we used a heuristic approach by considering state-of-
the-art knowledge on picture gesture authentication®. Taking into consideration that the tap (click) is
the least complex gesture, while the line is the more complex gesture, we set our complexity heuristic
as depicted in Table 1.

Table 1. Complexity heuristics based on combination of gestures, disregarding order.

Combination of gestures | Complexity

3 taps 40%
3 circles 80%
3 lines 100%

Disregarding order

1 tap & 2 circles 50%

2 taps & 1 circle 50%

1tap & 1 line & 1 circle 70%

2 taps & 1 line 70%
1tap & 2 lines 70%
2 circles & 1 line 70%
2 lines & 1 circle 80%

Taking into consideration that the proximity of different gestures impacts the overall complexity of
the password (e.g., different gestures on the same (X, y) segment on the grid are less secure), we take
an extra step to either penalize (-20%) password combinations that include gestures that are in close
proximity (as defined by the threshold of a circle of 3 segments radius), or reward (+20%) password
combinations that do not include gestures in close proximity. The minimum and maximum value of

24

textual password complexity is 0% and 100% respectively. The higher the score, the more complex
the password is.

Furthermore, for measuring textual password complexity, we have implemented Dropbox’s zxcvbn
(Wheeler, 2016), which is a widely applied and realistic password strength estimator. zxcvbn applies
pattern matching and conservative estimation, recognizing and weighing 30,000 common passwords,
names, surnames according to US census data, popular English words from Wikipedia and television
and movies. Commonly used patterns by users are also considered, such as, dates, repeated characters,
sequential characters, keyboard patterns, etc. (https://github.com/dropbox/zxcvbn). The source code
below depicts an example of password strength estimation through zxcvbn.

function get passphrase strength results (passphrase) {
var result = zxcvbn(passphrase, user inputs=[]);
var crack_time seconds = result.crack times_ seconds;

var crack times display = result.crack times display;

var res obj = {};
res obj.guesses = result.guesses;
res_obj.guesses_logl0 = result.guesses 1logl0;

res _obj.online throttling 100 per hour=crack time seconds['online throttling 100 per hour'];

res obj.online no throttling 10 per second=crack time seconds['online no throttling 10 per se
cond'];

res obj.offline slow hashing le4 per second=crack time seconds['offline slow hashing led4 per
second'];

res_obj.offline fast hashing 1lel0 per second=crack time seconds['offline fast hashing 1el0 pe
r second'];

res_obj.crack times display online throttling 100 per hour=crack times display['online thrott
ling 100 _per_hour'];

res obj.crack times display online no throttling 10 per second=crack times display['online no
_throttling 10 per_second'];

res_obj.crack times display offline slow hashing le4 per second=crack times display['offline
slow _hashing le4 per second'];

res obj.crack times display offline fast hashing 1el0 per second=crack times display['offline
_fast_hashing 1el0_per second'];

res obj.score = result.score;;
return res obj;
}

res obj = get passphrase strength results(passphrase);

Source Code. Example of password strength estimation through zxcvbn.
4.4 Intelligent Image Analysis for Quantification of Graphical Password Strength

Aiming to further assist the quantification of graphical password strength, we have implemented an
image analysis service, which performs Aurtificial Intelligence-driven object detection and points of
interest detection on an image. Such knowledge can be then fed into the graphical password strength
estimator for calculating the graphical password strength based on whether users make selections on
certain regions of an image that attract their attention and might be leveraged by attackers during a
guessing attack.

25

The service allows service providers to upload their own images or fetch images from the Internet
through Google’s Custom Search API (https://developers.google.com/places/web-service/search) and
location-based search through Google’s Place Search API (https://developers.google.com/places/web-
service/search). The service implements state-of-the-art computer vision algorithms to run along with
the training dataset they wish to be used. The current prototype was developed in Python through the
Django Web framework. Specifically, for the detection of objects, we integrated state-of-the-art
object detection algorithms, such as, the Mask R-CNN trained on COCO (Tsung-Yi et al., 2014),
YOLOv3 trained on the Open Images dataset (Kuznetsova et al., 2020), and Faster R-CNN trained on
PASCAL VOC (Everingham et al., 2010) and Cityscapes (Cordts et al., 2016) datasets. Figure 7 and
Figure 8 respectively illustrate the front-end user interface in which the user may upload an image for
semantic analysis, and the results of an image analysis in which objects that are detected trough the
image analysis tool are visually annotated on the image.

Home Lbray ActiveTasks Tasklogs APITutoral Lo

Photos / progress Bar Upload Aoalyss Setings & B Cear atabsse &, Generate Json

- o

Progress Bar Upload
Uploaded photos by the user

Search for query name in Show All
library

media/api_imag 6360-4622-8 jpg

media/api 17-4cfc-boaa

media/api 159-d0d8-470d-8161 1jpg

media/api_imag 5417-4b09-a5T; ipg

media/apl_images/b5512c7a-7cfb-4646-8c9c-0109¢126171e.jpg

media/api_images/ba9ccc74-4e35-418d-a01a-adbea5c5d261.jpg

New Google Search
Google search 4
e

Figure 7. Front-end user interface in which the user may upload an image for semantic analysis.

The image analysis tool has been designed to be extensible, by allowing easy adjustments to the
existing algorithms, as well as easy addition of new algorithms. The aforementioned algorithms are
implemented in Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). The pre-trained
weights of the models are stored on the server and are loaded in each request, so that the model can
predict the objects present in the image along with their respective locations and bounding boxes. The
interested reader may refer to Constantinides et al. (2021) for a comparative study among the
aforementioned computer vision algorithms for assisting users in graphical password composition.

Food 96%
Tableware 91%
Barware 88%
Drinking Establishment 85%
Building 84%
Shelf 82%
Shelving 81%
Bottle 80%

Figure 8. Objects detected through the image analysis tool.

26

5 Use-case Scenarios

The final version of the user authentication system builds on the third version of the system. For the
tasks of the previous versions of the user authentication system, please refer to D5.2 - Software on the
Initial Verified User Authentication System (Serums Deliverable 5.2) and D5.3 - Software on the
Refined Verified User Authentication System (Serums Deliverable 5.3). The new tasks are the
following: i) administrator login; ii) administrator creates and activates a user account; iii) updated
activation page; iv) set two-factor authentication during registration; v) download mobile application
and enroll user device; and vi) two-factor authentication approval page. The following tasks from the
first version of the system remain the same: i) user-adaptable authentication; ii) request to reset secret;
and iii) reset secret. For completeness, we include existing stable use-case scenarios from previous
deliverables of this work package (Deliverable 5.2; Deliverable 5.3).

5.1 Administrator Login

The administrator login page aims to assure that an administrator? (e.g., administrator from the end-
user organizations) has the right to access the Serums’ authentication administration page, which is
primarily used to create end-user (e.g., patient) accounts (Figure 9). In this phase, administrators
enter their credentials, which consist of a unique username, a secret Web-based key and their
organization. Then, the Authentication System validates the provided input details, leading to one of
the following cases: i) if the administrator does not exist in the Database, an error message is
communicated to the user interface with an informational message that the credentials are not correct;
and ii) if the credentials’ validation is successful, then an expiring API token is generated, and sent
back to the administrator’s user interface.

Administrator Authentication Database
Login System System

enter username, I
web key & organization ¢

send credentials
validate credentials

admin exists successfull

generate
AP token

send AP token

unsuccessful

message
wrong credentials

Administrator Authentication Database
Login System System

Figure 9. Administrator login sequence diagram.

2 To create system administrator accounts, we run a helper script that generates the accounts directly in the
Database. This is a special type of user that can enrol a user of any of the following types: hospital_admin;
medical_staff; and patient.

27

5.2 Administrator Creates and Activates a User Account

In this step, an administrator creates a new user account for an end-user (e.g., patient, doctor, etc.)
(Figure 10). In this phase, the user initially enters the account details of the end-user. Then, the
Authentication System checks the provided input details, leading to one of the following cases: i) if
the user does not exist in the Database, the provided input details are stored in the Database, and an
activation code is generated and sent to the Notification System. Then, an email including the
activation code is sent to the end-user and a success operation is returned to the administrator; ii) if
the user already exists in the Database, an unsuccessful operation is returned, along with a message
notifying the user that the provided user profile already exists.

Authentication Database Motification

Administrator System System System End-user

w,”. enter user profile details

send details

check user details

save
details

if user does not
exist

I
USER_ACTIVATED=0

generate
activation
code

send activation code N
= send email with

activation code

unsuccessiul

user exists message

Authentication Database Motification

Administrator System System System End-user

Figure 10. End-user registration and account activation by administrator.
5.3 Administrator Sends an Activation Code to User for Account Verification

In this step, a system administrator can send an activation code to an end-user’s email (Figure 11).
Then, the Authentication System checks the provided input details (i.e., username), leading to one of
the following cases: i) if the user does not exist in the Database, an unsuccessful operation is returned,
along with a message notifying the system administrator that the provided user profile does not exist;
if) if the user exists in the Database and his/her account is already activated, a successful operation is
returned, along with a message notifying the system administrator that the provided user profile is
already activated; and iii) if the user exists in the Database and his/her account is not activated yet, an
activation code is generated and sent to the Notification System. Then, an email including the
activation code is sent to the end-user and a success operation is returned to the administrator.
Accordingly, the end-user can use the code received in their email during account verification.

28

Authentication Database Notification

Administrator System System 5

End-user

admin sends activation code

enter user profile details

send details
chack user details

if user account not
activated

save
details

USER ACTIVATED=0

generate
activation
code

send activation code -
- sand email with

'
P
'
P
'
i
'
'
'
'
'
'
P
'
P
v
'
v
v
v
v
P
v
T
v
v
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
u
u
"
u
u
|
'
'
[
¥

activation code

SUCCESS

unsuccessful

user exists message

Authentication Database Natification

Administrator System System 5

End-user

Figure 11. Administrator sends an activation code to end-user.
5.4 Administrator Sends a Reset Code to User for Account Reset

In this step, a system administrator can send a reset code to an end-user’s email (Figure 12). Then,
the Authentication System checks the provided input details (i.e., username), leading to one of the
following cases: i) if the user does not exist in the Database, an unsuccessful operation is returned,
along with a message notifying the system administrator that the provided user profile does not exist;
and ii) if the user exists in the Database and his/her account is not activated yet, an unsuccessful
operation is returned, along with a message notifying the system administrator that the provided user
profile is not activated yet; and iii) if the user exists in the Database and his/her account is already
activated, a reset code is generated and sent to the Notification System. Then, an email including the
reset code is sent to the end-user and a success operation is returned to the administrator. Accordingly,
the end-user can use the code received in their email for the account reset.

29

Authentication Database Notification

Administrator System System S

End-user

admin sends reset code

enter user profile details

send details
chack user details

if user account
activated

save
details

USER AGTIVATED=1

generate
resat
code

send reset code

b4

sand amail with
raset code

SUCCESS

unsuccessful

user not activated

Authentication Database Natification

Administrator System System 5

End-user

Figure 12. Administrator sends a reset code to end-user.
5.5 End-user Activates Account

In this step, the end-user activates the account that was created by the administrator (Figure 13). The
user enters the email and the one-time password (activation code) received in the email. Then, the
Authentication System checks the provided input details, leading to one of the following cases: i) if
the provided details are valid, the user account is activated, a success operation is returned, and the
user is redirected to the secret creation page; ii) if the provided details are not valid, an unsuccessful
operation is returned, along with a message notifying the user that the provided credentials are wrong.

30

Authentication Database

Sliles System System

i
- i
activate !
account !

enter email (username) &
one-time password

validate credentials
and activate account

>

send credentials

if valid user SUCCESS

UZER_ACTVATED=1

redirect to
secret creation

message
wrong credentials

Authentication Database
End-user System System

Figure 13. User account verification and activation.
5.6 Creation of the Graphical and Textual Password

The first version of the password creation phase (D5.2 - Software on the Initial Verified User
Authentication System) has been adapted and includes two steps as follows. First, a grid of
personalized images to limit to the set of images linked to their hospital is illustrated to the users,
which illustrate sceneries from their hospitals. For the personalization of the images, we currently
limit the set of images to a predefined set that contains images highly relevant to the participants’
everyday activities and experiences within their healthcare environments. The users then select their
preferred image, which is then used as a background image on which the users create a secret gesture-
based password. Three types of gestures are allowed: taps, lines and circles. After creating the secret
graphical password they wish, users may also (optionally) create a textual passphrase (including
minimum 16 characters). Figure 14 illustrates the sequence diagram for the creation of graphical
password, and Figure 15 illustrates the sequence diagram for the creation of a textual password.

31

Graphical Fassword Authentication Database Image
Creation System System Database

enter username

send data

send user data

image set

send graphical create image grid

passwaord form

enter
gesture selections

send gesture selections
validate selections

user exists

successful

successfull

message
wrong credentials
unsuccessful
Graphical Password Authentication Database Image
Creation System System Database

Figure 14. Creation of the graphical password.

Textual Password Authentication Database
Creation System System
I v
username N
o send username H
send textual
password form '
i
enter password '
|
]
send credentials i
validate credentials ;
user exists
P successfull
successiull
P unsuccessiul
message

wrong credentials

1 i)
Textual Password Authentication Database
Creation System System

Figure 15. Creation of the textual password.

5.7 Enable Two-Factor Authentication Type and Pair Mobile Device

After successful creation of the graphical and/or textual password, the user may choose to set a
second factor for authentication for increased security. For this purpose, a mobile application has been
developed, which is utilized by the user to login. The mobile application is downloaded and installed
by the user and then the user needs to pair the device with his/her Serums account. Before pairing the
device, an enrollment code or a QR code is generated and sent to the Web-based user interface.
Figure 16 illustrates the sequence of interactions for generating the enrollment and QR codes.

Next, to pair the device, the user enters the enrolment code or scans the QR code through the mobile
phone. When codes are valid, the 2FA feature is enabled and the mobile device of the user is
successfully paired with the Serums account. Otherwise, an error message is communicated to the
user. Figure 17 illustrates the sequence of interactions for generating the enrollment and QR codes.

Web-based Authentication Database
User Interface System System
JWT token
JWT token N
validate JWT

create !
enroliment !
operation codes |
(QR or enroll code) |

JWT wvalid

QR and enrcll code

>

_ QR and enroll code

.3

unsuccessiul

message
invalid JWT token
I —

]

Web-based Authentication Database
User Interface System System

Figure 16. Creation of the textual password.

33

Mobile Authentication Database

Application System System
i ¥ [}
H ; :
scan QR or
enter enrcll code H
]
QR or enroll code H
» QR or enroll code
response
validate response
enable flag
o enable
response twe-factor authentication
generate
JWT token JWT token
unsuccessful
message
wreng codes
!
Mabile Authentication Database
Application System System

Figure 17. Pairing the user’s device based on the enrollment code or the QR code.
5.8 Two-Factor Authentication Login using the Mobile Application

In this page, a user approves or rejects the two-factor authentication (2FA) login request through
his/her smartphone’s mobile application. Two types for 2FA are supported; login through a Time-
based One-Time Password (TOTP), or through a mobile-based push notification. The user initially
selects the preferred 2FA login type (TOTP or push notification). Figure 18 illustrates the sequence
of interactions for the generation of the two-factor authentication login types.

In case the TOTP option is selected, the login screen enables a textbox, waiting for the user to enter
the code that can be found on the mobile application (Figure 19). In case the push notification option
is selected, a request is made to the Google’s Firebase Cloud Messaging Platform, which then sends
the appropriate notification to the end-user’s mobile application (Figure 20).

34

Two-Factor Authentication Database Firebase Mobile
Login System System System Application

] L] [l
i 1
|)
]]
| i
choose 2FA type '
i
i
i
send type I

preferred type -~
set type flag
response
TOTP J respense - i
Push notification J send push nofification
response
response H
] L]
: \
Two-Factor Authentication Database Firebase Mobile
Login System System System Application

Figure 19. Two-factor authentication login through a time-based one-time password.

Figure 18. Generation of two-factor authentication login types.

Two-Factor Authentication Database
Laogin System System
JWT token X v enter TOTP code i
send code & JWT

vaiidate code & JWT _

-~

codes valid J
P successiull
proceed login N
else « unsuccessful
deny login
] i
|
Two-Factor Authentication Database
Login System System

35

Mobile Authentication Two-Factor
Application System Login

JWT token User response

approve approval response .
proceed login -
reject rejection response
deny login
Maobile Authentication Two-Factor
Application System Login

Figure 20. Two-factor authentication login through a mobile-based push notification.
5.9 Unpair Mobile Device from Two-Factor Authentication

Users have the option to opt out from two-factor authentication if they wish to do so. This can be
performed via the “Remove” option in the main screen of the mobile application. After successful
removal of the two-factor authentication option, users will login using only their graphical or textual
password, without the additional layer of two-factor authentication. Figure 21 illustrates the sequence
of interactions for unpairing the mobile device from the two-factor authentication.

Authentication Database

Mobile Application System System

device unpair

validate JWT
JWT valid device unpair
»
successiul
B3
device unpaired
unsuccessful
message -«
invalid JWT token
] H i
: : :
_ Authenti Database
Mabile Application sw[::'ﬁﬂn Sﬁib:;

Figure 21. Unpair mobile device from two-factor authentication.

36

6 Verification of the Authentication System

6.1 Statistical Model Checking

The first approach being used for the verification of the Authentication System is based on formal
methods. It requires a formal representation of both the system and the properties under verification.
One of the most commonly used system representations is transition systems where system behavior
is modelled with a set of states and relations between them describing how the system change states.
In formal methods, properties are represented with temporal logic.

Model Checking is one of the techniques applicable to transition systems and temporal logic. The
approach performs an exhaustive exploration of the state space of the system and, as a result, can
guarantee that the property is satisfied. Unfortunately, model checking is subject to ‘state space
explosion’: the size of the state space of non-trivial system can be extremely large and infeasible for
the exploration. Statistical Model Checking (SMC) (Legay et al., 2010) is an alternative approach that
combines ideas from model checking with statistics. The core idea of SMC is to run a large number of
simulations of the system checking the property on each simulation and then to use statistical methods
to decide the probability of the property to be satisfied. SMC has been broadly applied in different
projects, e.g. (Gu et al., 2020’ Basile et al., 2017; Noomene Ben Henda, 2014)

We have built a formal model of the Authentication System representing the developed
software. The model also includes other components of the Serums system as well as other
actors allowing us to reason about interactions between different components. Modelling of
the whole Serums system is also a significant part of WP6 - “Integration and Testing”.

We used the Uppaal tool (Uppaal, 2022) that provides an expressive modelling formalism and model
checkers allowing us to verify that the properties hold on the model. Uppaal models are defined as
networks of timed automata. An example of an automaton is shown in Figure 22.

Receive Send

au_ch_requestHMAC? au_ch_sendHMAC!

Init

Figure 22. Credential Hardening timed automata model.

An automaton can be seen as a graph where nodes are states of the system (e.g., ‘Receive’ state in
Figure 22 corresponds to the moment when Credential Hardening component receives a passphrase)
and edges are transitions defining how the system change states (e.g., the edge between ‘Receive’ and
‘Send’ states models the generation of an HMAC by the component and the preparation to send it).
Each transition has a set of optional labels. A guard is a Boolean expression controlling the
enablement of the transition (there is no guard depicted on Figure 22; an example could be a guard on
the transition from the ‘Init’ state to the ‘Receive’ modelling the reception of a passphrase that blocks
the transition if the passphrase is empty). The second label is an update, a sequence of actions that
modify the variables of the model (a blue label on the transition between ‘Receive’ and ‘Send’

37

modifies the value of a variable shared_au_ch). The updates are defined with a subset of C language.
The third label is a channel allowing automata to synchronize actions. Each channel is defined by a
specific variable and transitions of two automata labelled with the same channel are synchronized,
i.e., they must be taken simultaneously. For example, the transition from the ‘Init’ state of Figure 22
to the ‘Receive’ state is synchronized over the channel au_ch_requestHMAC. Another automaton
sending the passphrase to the Credential Hardening component shall have a transition with the same
channel and the two actions would be performed together. It is important to note that if two transitions
are synchronized and one of the automata cannot take the transition the second one cannot take the
transition either (e.g., Credential Hardening component cannot receive a second passphrase before it
finishes processing the first one). One of the two transitions shall be an initiator of the
synchronization (indicated with ‘!”) and the other is a receiver (indicated with ‘?”). In Figure 22,
sending a generated HMAC is initialized by the Credential Hardening component while reception of
the passphrase shall be initialized by another component.

Several timed automata are combined into a network via synchronizations and shared variables. At
each point of time the network has three options to evolve to the next state: 1) by passing time 2) by
one automaton making a transition that is not synchronized with other automata 3) by several
automata making a simultaneous transition synchronized over the same channel.

The Authentication System is modelled with 4 automata: Back-end, Front-end, Credential Hardening
and an auxiliary automaton for JWT refresh procedure. The model also includes automata for the
‘environment’ of the Authentication System, including Smart Health Center System (a front-end
component of the SERUMS system interacting with users), patients, doctors, and administrators. The
model of the Backend is shown in Figure 23. The central state is the initial state of the automaton.
This automaton does not initiate any action: it waits for inputs from other components. After receiving
a request, the component performs a set of actions modelling to the implemented software. Request
procession is represented by one of the petals in the model. Following the software code, requests are
checked for correctness. Some requests verify only the presence of required parameters (in the model
they are sent via shared variables), while other require additional checks, for example user being
registered, passphrase, and JWT. These checks are located in the transition guards. If any of the check
fails, the corresponding transition is taken that returns an error message via the corresponding
channel. In case of all checks are passed, the automaton performs the required actions and return the
result to the requestor. For example, if the component receives a request to create a JWT (middle-right
part of the model) via au_pga_create_jwt? channel (the symbol ‘?* indicates that Backend is not an
initiator of the synchronization) it takes the value from the shared variable and parses it in order to
obtain three parameters: username, type of passphrase (graphical or text base) and the passphrase. The
outgoing transitions from the state has guards !checkinput(), and Icheckinput() && !hasinDbVerif.
The checkinput function returns whether the parsing has been successful while the hasinDbVerif
function checks the presence of a user in the database. If any of the functions return false, the
automaton notifies the requestor via au_pga_incorrect_request! channel (where ‘!’ indicates that the
Backend initiates the notification) or au_pga_no_user! channel. If both checks are passed, the
automaton selects the next transition based on the value of current_val_3 variable that is updated
during the parsing of the authentication type. The graphical password directly checks the hash while
text-based passphrase interacts with the Credential Hardening automaton via au_ch_requestHMAC!
channel and wait for the reply from the Credential Hardening component. The reply is compared with
the correct hashed passphrase (textual or graphical depending on the authentication type parameter)
and it returns a JWT in case of successful match, otherwise, it returns a wrong credentials message.

38

checkinputf) 82

generateEmai(currant i),
addToReselTablefcurrent_id)

thasidinDb(currant_val_1)
Setimage

au_pga_done!

GenerateEmail SendVerifEmail

getType{current id) =
checkinput() &4 isAdmin{shared_tarén_pgh_an

current_id = current_val_1,
curreni_type = current_v;
addToDB(current i,

i_token_pga_au) &
curront_id = current_val_1

RequestResetPass

M_pg: padgwora?
parse2Vais(shared_au_pgs)

I 1oken_pga_au) | erif{eurrent_val
au_pga_incorrect._request

checkinpul() &4 hasklinDbVeri(currant val_1) CMeckPassphraseSet
shared_au_pga = checkPassphraseSet(current_val_1)
ChockPassphraseSe(2

au_pga_done!

GenerateNewhceessTokenPGA
chackinput() &2 verify WT{cument val_1)
shared_au_pga = refreshIWT(current_val_1]

RefreshIWTPGA

au_pga_donal

au_pga_refresh_ut?
rrent_val_1 = shared_au_pga

rent_val_1)

au_pga_done!

2

curent_val_1>-1 Vel
shared_au_pga = current_val_1 B

au_pga_|

au_pga_done!
setPassword (current

rent_val_2. current_val
SetRecoivoHMAC

a HMAC?
current_val_2 = shar

SetRequestMAC SetPassphrase’
checkinput() && hasidinDb(current_val_1) &4 current val_3 == 0

au_ch_requestHMACT
shared_au_ch = current_val_2

alpda_no_user!

VerifyWTDL2{ GenerateNewAccess Token

current_val_1> -1 s =-1
shared_dl_au = current_val_I VerfyWTDL bl_au_verfy_jut_dofe!
y_pn”
VertawreL2 = verityIWT(shared_fr_au)
current val 1> -1
shared_bl_au = current_val_1

vl 151
“shared_fr_au = current_val_1
VerityWT

VerifyIWTBL

VeritywT2

checkinput() && haskinDbVerif(current_val_1)
ComaeSE o au_pga = getimage(cument_val_1)

Getimage

teheking
aulpga

fireshJWTicurrent_val_1)

au_pga_get_image?
current_val_1 = shared_au_pga.

asidinDbVerf{current_val_1)

{val_1) && val_1. -11)

SR s el tval 1) && tval 1,-11) && _val_1, current_val_2)

heckinput)) 8& 'hasldinDb(current_val_1)
paa_na_user!
\, CheckUisername

 val 1) 88 tval 1,-11) &8

InDb(current_val_1)

ChackResetPassword

checkinput) && hasidinDb{current_val_1) & checkCode(current_val_1, curre
au_pga_done!

&4 haskinDb(current_val_1) && lcheckCode(current val_L, current val

shared_au_pga =

al_1)

checkPassword{current_val_1, i

P=ry checkinput() 8 'haskdinDb(current_val_1)
u_pga_incorracl Feque au_pga_no_user!

parse3Vals(shared_au g

IpdatePassuord
checkinput() && fiasidS(current_val_1) && 'checkPasswordicurrent_val_1, current_val_2.0)
au_pga_wrng_crederbslg!

pga_done!

TpratePasswaricyrrent_val_L. curment_val_3)

checkinput() &4 thaske
au_pga_no_user!

QbVerif{current VAN

create]WT{current

LoginAdminSuccess -

checkinput() &4 hasklinDbVerif(current_val_1) &4 current_val_3 = 1
graphicPassHash(current_val_2)

_val_1, current_val_2)

input() &8 val_1) 82 t_val_1, current_val_2,0)

tchackAdminCredentials(current_wal_1, current_val_2, current_val_3)

checkinput{) 84 checkAdminCredantials(current_val_1, current_val_2, current_val_3)

shared_au_pga = createAdminToken(currant_val_1)

Figure 23. Authentication Back-end timed automata model

39

We do not model the task queue and the database as separate automata. The design of the model
ensures that a new task cannot arrive before the end of processing of the previous task while the
database is incorporated inside the automata variables.

The model for Credential Hardening component (Figure 22) is simple: it gets the passphrase from the
User Authentication component, creates a HMAC and sends it back. Note that the model being an
abstraction of the original system does not include full implementation of the HMAC procedure.
Since the implementation of the function is taken from the standard openssl library, we assume the
implementation to be correct and, in the model, we assume that the original passphrase cannot be
recovered from the HMAC. The function generated in the model is returning the input.

The model for the front-end component is split into three parts for the ease of presentation. These
parts are shown in Figures 24, 25 and 26. First part represents the signup procedure. It starts from the
bottom right state by getting the username followed by creation of the graphical password, and textual
passphrase. In Figure 24, the procedure follows the circle in a counterclockwise direction and in case
of any failure the model moves to the state in the center followed by patient notification. The second
part models the login procedure, which starts with receiving the username. The Backend component
shows which type of identification is available for the user and requests a passphrase or a graphical
password afterwards. In Figure 25, the procedure starts from the bottom left state and moves in a
counterclockwise direction. In case of successful password check, the Front-end returns a JWT to the
user. The Front-end component interacts with both Backend and Users. The final part models
interactions with administrators: login, logout, creation of a new user, and password reset.

Figure 27 illustrates the interaction of a patient with the Authentication system. A sequence of actions
showed in the right-top part of the Figure 27 shows the actions required by a Sign-up procedure. The
left part of the figure shows the Login actions. Both procedures follow the circle in a
counterclockwise direction from the bottom right state. The model of a doctor is similar.
Administrators are modelled with an automaton shown in Figure 28.

40

ResetPass

|
au_pga_check_reset_password bt 1

pt_pga_reset_pass{i]?

shared_au_pga = encode2Vals(i+NDoctors, shared_pt_pgalil).
current_val_1 = i+NDoctors,
de_pga_send_inputfcurrent_val_1]?

current_val_2 = shared_dc_pgafcurrent val_1],

shared_au_pga = encode3Vals(current_val_L, current_val_2.1)

WaitGraphPassphrase2

dc B Vet Talticurrent_val 11t

au_pga_set_passphrase!

:
pt_pga_send_inpulCleai-bal ERENESR

SetGraphPassphrase? §
current_val_2 = shared_pt_pgalcurrent_val_1-NDoctorsl>
shared_au_pga = encode3Vals(current_val_1, currgs

. au_pga~ au_pga_incorrect_request?
CreateWT shared_au_pga = encodsRFilsteiient val_1, current fal 2. 1)

au_pga_create_jwt!

SetGraphPassphraseDone

au_pga_done?

au_ a_no_user?
current_jwi = shared_au_pga _pga_no_L

au_pga_incorrect_request?

current_val_3 == SuggesiToSetPassphrase

pt_pga_request_inputfcurrent_val_1-NDJttors]t

current_val_3 ==

dc_pga_request_inputfeurrent_val_1]!
pt_pga_send_inputfcurient_val_1-NDoctors]

au_pga_wrong_credentials?

au_pga_incorres

s4pqa_set_passphrase!
1, shared pt Y

aw-fga_no_user?

current_val_B ==

SetPassphrase2 de_pga_signu faileWcurrent_val_1]!

InputSetPassphrase

|_su_pgh Fencode2Vals(i+NDactors, shared_pt_pgali]).

u |
au_pga_done fal_L/= f-NDoctors.

SuggestToSeiPassphrase2

ds d i t_val_1]? —dc_| SetPassphraseDone
c_pga_send_inputeurrent val 17 (o deq 2y pae’= encodedVals (current VAl T, SRare_dc_POAICUMENT VA 1107

shared_pt_pgafcurrent_val_1-NDoctors] == -1

SecondFactor Pt_pga_signup_dsge[current_val_1-NDoctors]!

InputSetPassphrase2 rred_de poalcurrent val 1] ==

current_val_3 ==
dc_pga_signup_done[current_val_1]!

dure model.

ign up proce

S

Figure 24. Authentication front-end

41

LoginSuccessful

Fonvard JTaurrent val 3

Acurrent_val_1 -NDoctors

au_pga_done?
current_val_2 = shared_au_pga.
aredata(current val_2)

CreateJWTLogin

au_pga_create_jwt!

au_pga_incorrect_request?

ReceivePass
de_pga_send_input{current_val_1]?

~al_1 -NDoctors]!

pt_pga_send_input[curifnt_val_1-NDoctors]?
shared_au_pga = encode3Vals(current_val_1, shared_pt_pga[current val_1-NDoctors],

RequestDoctorPass

RequestUserPass

Curreni7al 3 ==

fogin_failed[current_val_1]! pt_pga_request_inputfeurrenf. val_1-NDoctors]t

SelectPassType
pt_pga_send_inputfcussefit_val_1-NDoctars]?
current_val_2 = shar€d_pt_pgafcurrent val_1-NDoctors]

SelectPassType2

_RequestUserPassType

v
Pt_pga_request_input[current_val_1-NDoctors]!
shared_pt_pgalcurrent_val_1-NDoctors] = current_val_2

CheckPassphraseSet

au_pga_done?

i - DoctorlD : dc_pga_request_inputfcurrent_val_1]!
i1 current_val 2 = shared_au_pga current val_3 ==0 RequestDoctorPassType
dc_pga_login{]? shared_dc_pgalcurrent_val_1] = current_val_2

current_val_1= i,
current_val_3 =0,
shared_au_pga = current_val_L

Figure 25. Authentication front-end model: Login procedure model.

ff|. getHosppdi(aics),

_ad_pgalaid].
aid-ADMINSHIFT

current_admin =aid
parse2Valsi{shared,
shared _au_pe

LoginAdminDane

admins[current_admi
0d_ad_pgajcurrer

shared_au_pga = shared_ad_pgaaid]
d_token_pga 4-AOMINSHIFT

LoginAdmin2

o
Loy

tisAdmin(curra)

AdminReqF ail AdminRieqBone

d_pga_donefcurrent_admin]!

ad_pga_err

jcurrent_admin]

shared_au_pga = encode3Vals(current_val_1, shared_dc_pgafcurrent val_1], current val_2)

dc_pga_request_inputfcurrent_val_1]!

fic_pga_send_inputfcurrent_val_1]?
current_val_2 = shared_dc_pgalcurrent_val_1]

_ad_pgafaid])
ncode3Vals(aid, current_val_L, current_val_2)

ginAdmin

Figure 26. Authentication front-end model: Administrative procedures model.

42

SendGraph_pass

pt_pga_request_inputfid]?
RequestPassphrase pthoga_send_inputfid]!

shared_pt_pga[id] = -1 RequestGraph_pass

shared_pt_pga(id] = pasgword

RequestPassphrase?
, pt_pga_request_inputfid]?
Pt_pga_send_inputfd] ghared_pt_pgalid] = graph_pass

SendPassphrase
ignup \failed(id]?

shared_pt_pgalid]

Select passphrase”]

shared_pt_pgalid] = 0,
current_val_1=0

StartSignup
ptpga_reset pass[id]!

SelectPassType

pt_pga_signup_done[id]?
has_signup= tri
verif_code = -1

6_failedid]?
SignupPrepare

1 RequestPassType
pt_pga_request_inputfid]?

pt_pga_send_input[id]!

SendPass
'
Login has_signup shapeagjé 7?)‘5]%[\5] = verif_code Main
pt_pga_login[id]!
pt_pga_request_inputfid]2
[id]? fr_pt_loadef[id]?

shared_pt_pga]id] = usePass()
wt = shared_f_pt[id]

RequestPass
fr_pt_logout[id]!

pt_pga_send_input[id]!
Loading

SendPass LoadingWait

shargd_fr_ptfid] = jwt

fr_pt_load[id]!

pt_pga_login_done[id]?
jwt = shared_pt_pgalid],

pficif=jud au_pt_send_verif_email[id]?
verif_code = shared_au_pt[id]

Figure 27. Patient model for the authentication system.

ad_pga_error[cid]?

ad_pga_done[cid]?

RegisterUser

ad_pga_register_user[cid]!

RegisterUserPrepare

pareUser(uid)

ad_pga_done[cid]?

LoginSuccessful

LoginRequest

done[cid]?
uid” Seramsisr

[
Ls%daf'tec[lacu:\ga[(;i =id
AccountVerifPrepare

ad_pga_login[cid]!

ad_pga_error[cid

‘oken = 1 LoginPrepare

uid
uid !
shared_ad_pgal[cid] = uid

ad_pga_acc_verif[cid]!

ad_pga_erropf
shared_ad_pgal[cid] = encode2Vals(webkey, hospital)

AccountResetPrepare

ad_pga_logout[cid]!

ad_pga_done[cid]?
]
ad_pga_acc_reset[cid] —

AccountReset

Figure 28. Administrator automaton.

43

6.2 Properties Verification

For the verification of a model, the properties are checked with the Uppaal statistical model checker.
The properties shall be expressed in the Uppaal query language based on a simplified version of
Metric Interval Temporal Logic (MITL). Basic temporal operators in temporal logics are []p and
<>p. The former checks that p holds in all states, and the latter checks that p holds in at least one
future state. The properties has the following format: Pr[# <= N] F, where F is the property to
verify, N is the maximal length of traces, and # indicates that we consider the number of transitions.
Intuitively, the property checks the probability of F to be satisfied on traces containing at most N
transitions. Results returned by the SMC checker have the meaning depending on a temporal operator
used in F. For <> operator, the property is considered satisfied if the probability is not close to 0 and
unsatisfied otherwise. For [] operator, the property is satisfied if the probability is close to 1 and
unsatisfied otherwise.

For the verification of the Authentication System properties, we have removed the automata that are
not interacting with the Authentication System and simplified the remaining automata from the
environment in order to focus on the properties related to the system under verification. We limited
the trace length to 10000 steps: such length is sufficient to involve hundreds of interactions with the
Authentication System. Following, we list the properties with their description and their encoding in
MITL that we have verified. We omit Pr[# <= 10000] from the formulas in the list. We use -1 as null
or empty value for variables.

- The model does not deadlock, i.e. the model does not have a state from which it cannot progress.
This is checked with the following query: [] 'deadlock.

- Users can login to the system provided they use the correct graphical password or passphrase.
The query is: <>(Doctor.Main), where Main is the state of Doctor automaton reached after
successful login. The query for patients is similar. An extended version of this query is <>(
Doctor.Main && Doctor.jwt != -1), that in addition checks that at the state where the user is
logged in the user also has a JWT.

- Users cannot login to the system without providing the correct graphical password or passphrase.
For this query we modified the users automaton forcing to provide an incorrect graphical
password or passphrase. []J('PatientWithoutPassword.Main). An alternative option checks that
such patient cannot receive a JWT: [J(PatientWithoutPassword.jwt == -1)

- The user cannot login and receive a JWT if he has not signed up. The property is checked with
the following query: [] ((Patientjwt != -1) => Patient.has_signedup). Each Patient has a
Boolean variable has_signedup initialized to False. After successful completion of the Sign up
procedure, the variable is set to True.

- Anissued JWT can be verified by the Authentication System. This property can be checked by
adding an additional transition synchronized with the Backend on a channel au_pga_verify_jwt
and adding a Boolean variable that is set to True if the JWT verification fails. The model checker
verifies that the property holds: [] (! Backend.jwt_unverified).

- A dual to the previous property: a fake JWT fails verification by the Authentication system. The
Front-end component sends a fake JWT to the Backend with the assumption that the key used to
sign the JWT is unknown to the creator of the fake JWT. A Boolean variable is set to True if the
JWT verification succeeds: [] (! Backend.jwt_approved).

44

- A user cannot sign up without being registered by an admin. For this query we force admins to
not register a Patient0 and check [](!Patient0.has_signedup).

- A user can sign up provided that there is an admin registering users. <> (Patient.has_signedup).
Note that during simulation, admins may never register a particular user and therefore the query
cannot be satisfied with the probability close to 1, but for queries with <> temporal operator we
check the probability being not close to 0.

- A user cannot change password without being reset by an admin. We extend the behavior of one
of the patients with password change option. Admins are forced not to reset the patient password.
At the end of the password change procedure, there is a state PassChanged reachable in case of
successful password change and the query is: [] (! Patient.PassChanged).

- A dual property that a user can change password when admins are allowed to reset passwords.
<> (Patient.PassChanged).

- An admin can login to the Authentication System provided usage of a correct password.
<>(Admin.LoginSuccessful).

- A dual property - admin cannot login without correct password.
[1(*AdminWithoutPassword.LoginSuccessful).

- The following group of properties is constructed via a single scheme. We generate an automaton
of a user that tries to interact directly with the Backend automaton. It is done with an assumption
that such user is an attacker, and the attacker has knowledge of expected request parameters but
not passwords of other users. If the Backend returns successful result, the attack reach the state
Success. The query is [] ('Attacker.Success). The property has not been verified by several
backend requests. Further exploration showed that while some of the request parameters are
checked in the request processing code, authorization parameters are added as an annotation to
the function and processed by Django Framework. Therefore, we had to update the model in
order to take into account these annotations. The query has been checked on a modified model
and the property failed with set_graphical_password request. Exploration of the deployed system
showed that indeed this request can be executed without proper authorization, and return a
success message in the case a password reset has been requested but not performed, at the
moment of attack, which limits its application.

6.3 Fuzzing

The second approach used for the verification of Authentication System is fuzzing. Fuzzing (short for
fuzz testing) is an effective and widely used technique for finding security bugs and vulnerabilities in
software. It inputs irregular test data into a target program to try to trigger a vulnerable condition in
the program execution (Chen et al., 2018). Technically, fuzzing tests a system with the continuous
processing of test cases generated by another program. At the same time, the system is monitored to
expose any defects revealed by processing this input.

Fuzzing techniques can be divided into three kinds: black box, white box, and gray box depending on
how much information they require from the target program at runtime (Jaiaskeld, 2016). Black-box
fuzzers are unaware of the internal program structure, that is, their target is a black-box, no feedback
other than what is directly observable is provided (Van Rooij et al., 2021). One of their main
advantages is their low overhead which allows them to exercise the program under test with millions

45

of inputs. In this way, their chances of triggering a bug increase. On the other hand, their lack of
knowledge on the program’s structure comes with a cost.

White-box fuzzing is based on the knowledge of internal logic of the target program (DeMott, 2006).
It uses a method which in theory can explore all execution paths in the target program. Unlike black-
box fuzzing, white-box fuzzing requires information from the target program and uses the required
information to guide test case generation. Specifically, starting execution with a given concrete input,
a white-box fuzzer first gathers symbolic constraints at all conditional statements along the execution
path under the input.

Gray-box fuzzing stands in the middle of black-box fuzzing and white-box fuzzing to effectively
reveal software errors with partial knowledge of the target program. By this means, a gray-box fuzzer
can obtain code coverage of the target program at runtime; then, it utilizes this information to adjust
its mutation strategies to create test cases which may cover more execution paths or find bugs faster.
Gray-box fuzzing only uses the acquired information to guide test case generation, but it cannot
guarantee that using this piece of information will surely generate better test cases to cover new paths
or trigger specific bugs. By contrast, white-box fuzzing utilizes source codes or binary codes of the
target program to systemically explore all the execution paths.

Although several fuzzing tools have been developed over the years (Figure 29), they are mostly
designed for local executables and not usable for web applications like our targets.

IR . . .

PROTOS peach SAGE BUZZFUZZ honggfuzz AFL FuzzSim BORG MoWF AFLFast VUzzer Skyfire

fuzz SPIKE KLEE GWF TaintScope BFF Dowser syzkaller SYMFUZZ Driller AFLGo learn&fuzz Steelix
. . . P

.

.

1990 - 1999 - 2002 — 2004 - 2008 2009 — 2010 2012 2013 2015 2016 2017 time line

Figure 29. Fuzzing Technique Evolution Diagram (Chen et al., 2018).

A black-box fuzzer: wfuzz (http://wfuzz.io — Figure 30), is one of few appropriate fuzzers publicly
available for our targets, i.e., front and back-end web applications for the Authentication System. The
wfuzz allows any input to be injected in any field of an HTTP request since it is based on a simple
concept: it replaces any reference to the FUZZ keyword by the value of a given payload.

wfuzz -h
e e b o e e of sk ofe o ok s ook s ook ok ek e ook ook ko skl ot ko b stk ot kool ok ok skl hokok ok

* Wfuzz 3.1.0 - The Web Fuzzer
N

* Version up to 1.4c coded by:

* Christian Martorell orella@edge-security.com)
* Carlos del ojo (dee il.com)

N

Version 1.4d to 3. y:

* Xavier Mendez (xmende -security.com)

Pl o o ok e e o sheofe ook e ok seofofok oeopop e e fesfe s ook stk ok stk ok seofofolsopof e

%
N
N
%
N
N
%
N

sage: wfuzz [options] -z payload,params <url>

FUZZ, ..., FUZnZ wherever you put these keywords wfuzz will replace them with the values of the specified payload.
FUZZ{baseline_value} FUZZ will be replaced by baseline_value. It will be the first request performed and could be used as a base for filtering.

Dptions:
-h : This help
--help : Advanced help
--version : Wfuzz version details
-e <type> : List of available encoders/payloads/iterators/printers/scripts

-C : Output with colors
-V : Verbose information.
--interact : (beta) If selected,all key presses are captured. This allows you to interact with the program.

Figure 30. WFuzz — A black-box fuzzer for testing.

We performed the black-box fuzzing along with pre-loaded http sessions in order to mimic the gray-
box fuzzing throughout our target web applications using the wfuzz.

46

6.4 Fuzzing Checks

We performed the fuzzing to the front and backend web applications for the Authentication System.
More specifically, we scanned vulnerable paths within or without a user session and tested user login
procedure.

To scan for the paths to access the system we used the word list provided by wfuzz and collected
accessible paths in front- and back-ends.

for £ in wfuzz/wordlist/general/* #for all wordlist files in general category

do

#Runnning wfuzz with hiding the response of code: 404 and 403 along two different common
directories

wfuzz -w $f --hc 404,403 https://localhost:9001/web app/login admin/FUZZ

wfuzz -w $f --hc 404,403 https://localhost:9001/web app/FUZZ

done

In addition to these, we performed fuzzing on values of random cookie parameters and recursive
fuzzing of the paths up to the depth of three. In order to fuzz within a user session, we first obtained
the cookies: csrftoken, sessionid, jwt_access and jwt_refresh, using the commands listed below, and
then injected those cookies into the fuzzing requests.

#Access to login page and get csrftoken cookie
curl -k 'https://localhost:9001/web _app/login username/' -0 login username.html -c
cookie.txt

csrftoken=$ (grep token cookie.txt |cut -f 7)

#Feed username : test@test.com and get session cookie
curl --data-urlencode username=test@test.com -k https://
localhost:9001/web app/check passphrase set -b cookie.txt -c cookie.txt -e

https://localhost:9001/web app/login username -X POST -H "X-CSRFToken: $csrftoken"
sessionid=$ (grep sessionid cookie.txt |cut -f 7)
#Feed passpharase and get jwt access and jwt refresh cookies

curl -k https://localhost:9001/web app/passphrase login -b "csrftoken=$csrftoken;
sessionid=$sessionid" -c cookie.txt -e Thttps://localhost:9001/web app/text login.html -d
'username=test%40test.com&passphrase=00ph0120541pin63c70m9&total time until submit=13565&tota

1 time until submit since page load=13285&time interaction started=0&is reset=false' -H "X-
CSRFToken: $csrftoken"

jwt_access=$ (grep jwt access cookie.txt |cut -f 7)

jwt refresh=$ (grep jwt refresh cookie.txt |cut -f 7)

Commands for getting into a wuser session (username: test@test.com, passphrase:
00ph0120541pin63c70m9)

Front-end

Our scanning for accessible pages at front-end server led to the following pages. Note that the
presence of the page is not a vulnerability but a potential entry point for further search. We found
each of those pages is not associated with just one fixed url but with keywords from the same
categories.

Without user session

Below shows the discovered pages without user session.

47

https://localhost:9001/web_app/add_user.php
Empty json string {} as the below image.

JSON Raw Data Headers

Save Copy Collapse Al Expand all

Figure 31. Empty json string {} as the below image.

https://localhost:9001/web_app/cgi-sys/realsignup.cgi
Registration form to sign up a user as the below image.

Figure 32. Registration form to sign up a user.

https://localhost:9001/web_app/login_admin/email
Login page of System Administrator

https://localhost:9001/web_app/login_admin/demo
The first page of Demonstration

https://localhost:9001/web_app/login_admin/index
Welcome page of Serums

https://localhost:9001/admin/ redirecting to https://localhost:9001/admin/login/?next=/admin/
Login page of Django administrator as the below image. Django administrator login/password does
not coincide with the Serums administrator credentials, neither vulnerable standard login/password

pairs work.

Django administration

Figure 33. Django administrator page.

48

https://localhost:9001/web_app/login_admin/images

redirects to https://localhost:9001/web_app/login_username

SERUMS Smart Hoalth Centro Systam {3y Home () Cantact us

Welcome to EU Horizon 2020 Serums

Figure 34. Sign in page.
Within a user session

In addition to the pages discovered without user session shown above, the following page was found
by fuzzing within a user session.

https://localhost:9001/web_app/images

The image selection page for the gesture pass. This page shall be accessible only during creation or
update of the graphical password; however it is accessible at any point of time from a user session.
Further steps of the password update cannot be reached from this page: after pressing the continue
button, the system checks that the password update has not been initiated and redirects to the login
page.

SERUS Sovar eatn Corere Sy Q) Home (D Contact © Oseve Boan

Image Selection

Figure 35. Image selection for creating a graphical password.
Back-end

Our fuzzing against the back-end server led to the following three pages.

49

https://localhost:9000/cgi-bin/printenv

A testing script of the apache server. The script if allowed to be executed could show internal
information from the server. This output and additional checks showed that the testing functionality is

disabled and the vulnerability is not present.

£ 3

To permit this cgi, replace # on the first line above with the
appropriate #!/path/to/perl shebang, and on Unix / Linux also
set this script executable with chmod 755.

*rxkx 111 WARNING !!! *%%kx

This script echoes the server environment variables and therefore
leaks information - so NEVER use it in a live server environment!
It is provided only for testing purpose.

Also note that it is subject to cross site scripting attacks on
MS IE and any other browser which fails to honor RFC2616.

£ I S O R

printenv -- demo CGI program which just prints its environment

iy

use strict;
use warnings;

print "Content-type: text/plain; charset=1s0-8859-1\n\n";
foreach my $var (sort(keys(%ENV))) {

my $val = SENV{$var};

$val =~ s|\n|\\n|g;

$val =~ s|"|\\"|g;

print "${var}=\"${val}\"\n";

https://localhost:9000/cgi-bin/test-cgi?/*
Another testing script of Apache server.

*

To permit this cgi, replace # on the first line above with the
appropriate #!/path/to/sh shebang, and set this script executable
with chmod 755.

*x%2% |11 WARNING !!§ *s**xx

This script echoes the server environment variables and therefore
leaks information - so NEVER use it in a live server environment!
It is provided only for testing purpose.

Also note that it is subject to cross site scripting attacks on
MS IE and any other browser which fails to honor RFC2616.

ok gk gk e 4 e e 9 N

*

disable filename globbing
set -f

echo "Content-type: text/plain; charset=iso-8859-1"
echo

echo CGI/1.0 test script report:
echo

echo argc is $#. argv is "$*".
echo

echo SERVER SOFTWARE = $SERVER SOFTWARE
echo SERVER NAME = $SERVER NAME

echo GATEWAY INTERFACE = $GATEWAY INTERFACE
echo SERVER PROTOCOL = $SERVER PROTOCOL
echo SERVER PORT = $SERVER PORT

echo REQUEST METHOD = $REQUEST METHOD
echo HTTP_ACCEPT = "SHTTP_ACCEPT"

echo PATH_INFO = "$PATH_INFO"

echo PATH_TRANSLATED = "$PATH_TRANSLATED"
echo SCRIPT NAME = "$SCRIPT NAME"

echo QUERY_STRING = "$QUERY STRING"

echo REMOTE HOST = $REMOTE_HOST

echo REMOTE_ADDR = $REMOTE_ADDR

echo REMOTE USER = $REMOTE USER

echo AUTH_TYPE = $AUTH_TYPE

echo CONTENT TYPE = $CONTENT TYPE

echo CONTENT LENGTH = $CONTENT LENGTH

50

https://localhost:9000/admin/login
Django admin login page

Django administration

Username:

Password:

Figure 36. Django admin login page.
User login

We performed fuzzing of the user login procedure. We registered a user: test@test.com with a
passphrase that can found in a word list of SecL.ists git repository and considered to be unsafe.

The login procedure consists of three steps:

1. Load login page and token cookie

2. Send username along with the token cookie through a POST request and get session id cookie
3. Send username, passphrase and the other fixed parameters along with token and session id.

Therefore, we first processed the step 1 and 2 with curl commands, and then fuzzed the step 3 using
the token and session id cookies.

#Step 1

curl -k https://localhost:9001/web app/login username/ -o login username.html -c cookie.txt
token=$ (grep token cookie.txt |cut -f 7)

#Step 2

curl --data-urlencode username=test@test.com -k
https://localhost:9001/web app/check passphrase set -b cookie.txt -c cookie.txt -e

https://localhost:9001/web app/login username -X POST -H "X-CSRFToken: S$token"

session=$ (grep sessionid cookie.txt |cut -f 7)

#Step 3

wfuzz -w /wordlist/btd-password.txt --hc 405,403 --hh 104 -b "csrftoken=$token;
sessionid=$session" -H "Referer: https://localhost:9001/web app/text login.html" -H "X-
CSRFToken: Stoken" -d

"username=test%40test.comépassphrase=FUZZ&total time until submit=13565&total time until subm
it since page load=13285&time interaction started=0&is_reset=false"
https://localhost:9001/web app/passphrase login

Commands for fuzzing the login procedure with a known username. As shown below, the passphrase
is identified at the 136" candidate of the word list.

51

https://github.com/danielmiessler/SecLists

Target: https://pga-web/web_app/passphrase_login
Total requests: 1652903

Total time: 0

Processed Requests: 46950
Filtered Requests: 46949
Requests/sec.: 0

Figure 37. Output from wfuzz.

The server allowed unlimited number of attempts (in our case, approx. 47k attempts) to test
passphrase within the same session, which seems a potential risk.

Above, we fuzzed the procedure with the known username, however, there is also a way to find
registered usernames using the fuzzing. At the #Step 2, the server responds either the request succeeds
or not as below.

{"success": false, "set": false, "errors": "User not found in the system"}
{"success": false, "set": false, "errors": "Bad request - Please provide a valid email"}
{"success": false}

Examples of server responses for the failure of #Step 2: Username

And therefore, it is also possible to search registered usernames by fuzzing with approx. 9M
usernames across four wordlists from wfuzz and SecLists. If the username is found, then the
associated password can be fuzzed as above with approximately 50M candidate passwords. And
again, such cracking can be avoided by introducing the user locking system.

The login with a graphical password can be fuzzed around the different parameters for gestures in a
similar manner.

We performed the fuzzing to discover vulnerable paths and crack a user login. We invite the
developers and service providers who will use the FlexPass system to judge if the discovered paths
introduce vulnerabilities. However, for the user login, we found a potential risk to be broken by
fuzzing, and thus recommend introducing a locking function after a certain number of login attempt
failures.

52

7 Implications

7.1 FlexPass Applicability in the Healthcare Domain

In this section we elaborate on the applicability of FlexPass in the broader healthcare domain and
provide guidelines and prototypes that can serve as a basis for implementing an adaptation and
personalization system based on the suggested authentication paradigm. Figure 38 illustrates the
envisioned FlexPass system within healthcare environments. At a first stage, an organization would
need to identify mainstream spatial areas of the hospital, i.e., areas that visited by the majority of
individuals (medical staff, patients, relatives, visitors, etc.). Next, the spatial relevance of each
mainstream area should be identified in order to create a neighborhood/relationship map among the
diverse mainstream spatial areas identified, e.g., the mainstream spatial area “reception hall” is related
to the hospital’s “cafeteria”, hence, a relationship rule would be created connecting the two areas.
Finally, the system administrator would need to prepare and upload relevant images depicting
sceneries for each of the identified mainstream of the hospital. These images would then be processed
through an adaptation and recommendation engine that would recommend best-fit images to end-
users aiming to improve memorability and security of passwords. For doing so, the recommendation
engine would also receive as input the end-users visitation record in order to extract the relevant
experiences and visits the end-users had in specific mainstream spatial areas of the hospital. In this
respect, FlexPass will leverage on the existing user authentication infrastructure that exists in the
healthcare organization for retrieving the user’s visitation record.

Hospital Organization End-user [T
Mainstream Mainstream Preferred Location-aware
Spatial Area 1 Spatial Area N Experiences in Mainstream Areas

End-user Visitation Record

Spatial Spatial
Relevance Relevance
Best-fit Image to Improve
Relevant Relevant Memorability and Security
Images ‘ Images

l t

Figure 38. The envisioned FlexPass system within healthcare environments.

The following scenarios are anticipated: i) Enrolment Scenario: During user enrolment, the system
would retrieve (based on the username and a unique enrolment code) the user’s visitation record
within the hospital. Based on the semantic similarity of the user visits and the mainstream spatial
areas of the hospital, the system recommends three relevant images to choose from for creating their
graphical password. Note that the three images would have the same level of complexity and hotspots
to avoid scenarios in which the user would create predictable passwords; ii) Login Scenario: During
login, the system would illustrate two options for authentication (graphical vs. textual), and
accordingly the user would enter their secret credentials to login; and iii) Reset Scenario: Password

53

reset could be initiated either by the user (e.g., in case they forget their password) or by the system
based on the organization’s applied policy. In this case, the same procedure would follow as in the
enrolment scenario, considering however the previous image selections of the user, in order to avoid
users selecting the same password.

7.2 FlexPass Personalization Workflow and Recommendation Rules

We envision that FlexPass may be deployed as a standalone user authentication system within
healthcare organizations, which would consist of the following modules (Figure 39): i) the System
Administration module; ii) the User Modeling module; iii) the Recommendation module; and iv) the
Flexible User Authentication module. The System Administration module would allow administrators
to upload and maintain images that depict sceneries of various locations of the hospital (e.g., reception
hall, main rooms of the hospital, garden, etc.). The system’s image database would also be filled by
end-users, would be able to upload their own images taken within the hospital, once approved by the
system administrator by following internal policies and requirements of the organization. The User
Modeling module would analyze the existing health record of the patients based on their activity and
visits at the hospital (e.g., patient may visit doctors of cardiology department, etc.). Based on the
analysis, the module would infer the patient’s frequent visits and important locations within the
hospital, which would be then provided as input to the Recommendation module to recommend
images depicting sceneries from the patient’s most common visits. The Recommendation module
would be further enhanced with image analysis technologies aiming to annotate the images
semantically and automatically with the depicted content, which may be used during password
creation for recommendation and user guidance for the creation of more memorable and secure
passwords. Finally, the Flexible User Authentication module would be responsible for authenticating
users based on an easy-to-use and a flexible authentication paradigm that would be based on the
recommended and/or user-adaptable graphical passwords.

..

: User Modeling Module

Human Contextual Image Design N
Factors Factors Factors Factors |
= Age = Device type ~ = Semantics)

é » Preference 2 = Location h * Hotspots —
—1l s Factorn “ w Factorn = Factor n L

W B EE User Interactions g@

Q-j User Modeling ;

Context Collection

User ‘ :
________ t 1
k- 0 Context-based (P Maintain . :
< le sed -
= Recommendations s Rules & Images (¥ !
Sgus s
: Administrator:
#BE Recommendation 3

Recommendation Module Engine

Figure 39. FlexPass personalization workflow — building on Fidas et al. (2015).

54

Algorithm #1 presents our content-based recommendation algorithm that will recommend relevant
images during password creation/reset based on the rules of mainstream spatial areas and user’s
visitation records and experiences within the hospital.

Algorithm 1. Algorithm for image recommendation during password creation/reset.

Algorithm #1:

Image recommendation during password creation/reset

Input: A set of user models that describe the wusers’ frequent visits and important
locations at the hospital, filtered to <contain relevant information based on the
relationship map between the mainstream areas um = {um;, um,, .., um,} and a set of

candidate images that depict the mainstream spatial areas of the hospital,

system administrator and the end-users ci =

Output:

similarity scores.
1: procedure Mainstream Map ()
2: ma = identify mainstream areas();
3: mm = create relationship map (ma);
4: return mm;
5: end procedure
6: procedure Candidate Images ()
7: ci set = upload images();
8: for i := 1 to k do begin
9: eit; = explicit image tags();
10: iit; = implicit image tags();
11: ci; = eit; U 1it;;
12: ci; = clean text(cij);
13: append to_set(ci set, cij);
14: end for
15: return ci set;
16: end procedure

{cis,

provided by the

Cciz, .., Clx}.

The top N images that are recommended to the end-user based on the semantic

Annotated by system administrator
Annotated by computer vision techniques

17: procedure Recommend Images (mm, ci)

18: for i := 1 to m do begin

19: semantic ranking = {};

20: fv; = frequent visits();

21: il; = importan_ locations();

22 fmm; = filter mainstream map (mm, fvi, 1il;);
23: um; = fv; U 1il; U fmm;;

24 um; = clean text (um;);

25: for j := 1 to k do begin

26: ss;; = semantic similarity(um;, ci;); # through NLP techniques
27: semantic ranking[i][j] = ssij;

28: end for

29: sort_by value(semantic ranking);

30: recommend top N(um;, semantic ranking);
31: end for

32: end procedure

33: mm = Mainstream Map () ;

34: ci = Candidate Images();

35: Recommend Images (mm, ci);

55

8 Conclusions

The aim of this deliverable D5.4. - “Report on Final User Authentication System” is to report the
outcome of the design, development, verification and evaluation of the final software of the user
authentication scheme. This includes the final suggested authentication paradigm based on a novel
retrospective approach in graphical passwords, the general architecture design, the development
details of the credential hardening component, the sequence diagrams of use-case scenarios of the
user authentication scheme, the design of the front-end prototypes of the final user authentication
system, the results of the verification of the authentication properties, the results of the user evaluation
of the user authentication system and the description of the core endpoints of the Application
Programming Interface.

The outcome of this deliverable will be used as an essential input for other tasks and deliverables in
Serums. Specifically, the API and the underlying database will be used as input in D2.6 for the final
specifications and final software of the Smart Patient Health Records, and in D4.3 for the final data
fabrication and semantic-preserving encryption. The authentication architecture, APIs and database
will be used as an essential input in D6.3 for integrating the authentication system in the overall
Serums’ smart healthcare system software. The user interface designs of the user authentication tasks
will be evaluated as part of D7.6 aiming to further evaluate the likeability aspects of FlexPass, its
security and usability characteristics, the design of the user authentication system front-end, measure
the users’ acceptance, as well as the users’ perceptions on aspects such as usability, memorability,
security and trust. Finally, the outcome of D5.4 will be used as a basis for further elaborating ideas
and areas for improvement for the user authentication system as part of the Serum technical roadmap.

Limitations of this research work are related to the fact that certain background images were used to
control the factors of the user evaluation studies (as part of WP7’s activities). Nevertheless, we
provided the most commonly used image categories (representing landscapes, sceneries) and images
of similar complexity. Aiming to increase external validity of this research work, we plan to explore a
wider variety of image categories to triangulate findings. Furthermore, we stress that FlexPass is also
susceptible to shoulder-surfing attacks, similar to the majority of graphical password systems (Tari et
al., 2006; Chiasson et al., 2007). To minimize the threats of shoulder-surfing attacks, expansion of
this research will consider adopting fake cursors (De Luca et al., 2013), decoy techniques (Zakaria et
al., 2011) during graphical password creation. Likewise, the aforementioned countermeasures could
also be used in the case of stealth attacks, during which the adversary takes a video from a distance
while the user enters their credentials (Yue et al., 2014).

In addition, future work includes investigating the impact of other intrinsic human factors (e.g.,
emotional parameters, cognitive styles, etc.) in personalized interactive graphical user authentication
schemes (Fidas et al., 2021). Considering that emotions correlate with long-term memory (Tyng et al.,
2017), and that events associated with emotions are more likely to be remembered (Christianson,
1992), future work entails investigating whether differences exist in individuals’ emotions triggered
when utilizing personalized images in FlexPass and when utilizing non-personalized images in other
graphical user authentication schemes.

Furthermore, FlexPass requires users to remember only one password at a time, similar to the
majority of graphical user authentication schemes. Hence, there is limited knowledge regarding
memory interference (Biddle et al., 2012), which refers to “the impaired ability to remember an item
when it is similar to other items stored in memory” (Anderson and Neely, 1996). Future research

56

entails investigating whether memory interference occurs in cases in which individuals have created
graphical passwords on similar images across multiple accounts in FlexPass.

Finally, evidence suggests that individuals tend to reuse the same or similar passwords across multiple
accounts, aiming to reduce the memory load of remembering multiple passwords (Biddle et al., 2012).
Such approaches have a negative impact on the security. Hence, another future research direction
entails investigating whether differences exist in password reuse between individuals who utilize
personalized images in FlexPass and individuals who utilize non-personalized/generic images in other
graphical user authentication schemes.

We anticipate that the suggested approach will have a positive impact on both healthcare
organizations and end-users. From the organization’s perspective, the flexible approach will assist
healthcare organizations to easily adjust their policies to the varying roles of their end-users (patients,
doctors, administrators), in which current practice indicates that the “one-size-fits-all” approach is not
adequate in the highly dynamic and heterogenous contexts of use in the healthcare domain. From the
end-user’s perspective, the suggested flexible and personalized paradigm and supported results open
new directions for considering novel knowledge-based user authentication mechanisms to assist end-
users to choose the “best-fit” authentication scheme depending on preference, unique characteristics
and the context of interaction (e.g., interaction in the office, in the emergency room, off the network,
and so on).

Within nowadays information era, patients and medical staff interact in highly dynamic healthcare
environments and contexts, and tend to use multiple devices to authenticate themselves, it is obvious
that the current widely deployed “one-size-fits-all” text-based authentication paradigm might soon
become obsolete. Hence, we believe that approaches like FlexPass provide an alternative solution to
current state-of-the-art research and practice, and have the potential to be easily adopted with a rather
inexpensive solution compared to other token-based (e.g., smartcards) and biometric-based (e.g.,
fingerprint) solutions, which necessitate increased implementation effort and maintenance costs.

57

References

Abadi, M., Barham, P., Chen, J. et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} symposium on operating systems design and implementation ({OSDI} 16), 265-283.

Anderson, M. C., Neely, J. H. Interference and inhibition in memory retrieval. In Memory. Elsevier, 1996, pp.
237-313

Atkinson, R.C., Shiffrin, R.M. (1968). Human memory: a proposed system and its control processes. In: Spence,
K.W., Spence, J.T. (eds.), The psychology of learning and motivation (Volume 2), Academic Press, 89-195

Baddeley, A. (1990). Human memory: theory and practice. Lawrence-Erlbaum, London

Basile, D., Giandomenico, F.D., Gnesi, S. Statistical Model Checking of an Energy-Saving Cyber-Physical
System in the Railway Domain. In Proceedings of the Symposium on Applied Computing, 2017

Belk, M., Fidas, C., Germanakos, P. and Samaras, G., 2017. The interplay between humans, technology and
user authentication: A cognitive processing perspective. Computers in Human Behavior, 76, pp. 184-200

Belk, M., Fidas, C., Pitsillides, A. (2019). Flexpass: Symbiosis of seamless user authentication schemes in IoT.
In Proceedings of the Conference on Human Factors in Computing Systems (CHI 2019), ACM Press, 2019

Biddle, R., Chiasson, S., van QOorschot, P. (2012). Graphical passwords: Learning from the first twelve years.
ACM Computing Surveys, 44(4), 41 pages

Biddle, R., Chiasson, S., Van Oorschot, P. C. Graphical passwords: Learning from the first twelve years. ACM
Computing Surveys (CSUR) 44, 4 (2012), 1-41

Burr, W.E., Dodson, D.F., Polk, W.T. (2006). Electronic authentication guideline. National Institute of
Standards and Technology, Technical report

Chen, C., Cui, B., Ma, J., Wu, R., Guo, J., & Liu, W. (2018). A systematic review of fuzzing techniques.
Computers and Security, 75, 118-13

Chiasson, S., Van Orschot, P. C., Biddle, R. Graphical password authentication using cued click points. In
European Symposium on Research in Computer Security (2007), Springer, 359-374.

Christianson, S.-A. Emotional stress and eyewitness memory: a critical review. Psychological bulletin 112, 2
(1992), 284

Constantinides, A., Belk, M., Fidas, C., Beumers, R., Vidal, D., Huang, W., Bowles, J., Webber, T., Silvina, T.,
Pitsillides, A. (2021). Security and Usability of a Personalized User Authentication Paradigm: Insights from a
Longitudinal Study with Three Healthcare Organizations. ACM Transactions on Computing for Healthcare
(submitted; major revision; second round of reviews)

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). Design and Development of a Patient-centric User
Authentication System. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and
Personalization (Adjunct UMAP 2020), 201-203

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2019. On the accuracy of eye gaze-driven classifiers for
predicting image content familiarity in graphical passwords. In Proceedings of the ACM Conference on User
Modeling, Adaptation and Personalization (UMAP 2019). ACM Press, 201-205

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2020. An eye gaze-driven metric for estimating the
strength of graphical passwords based on image hotspots. In Proceedings of the International Conference on
Intelligent User Interfaces (Ul 2020), ACM Press, 33-37

Constantinides, A., Fidas, C., Belk, M., Pietron, A., Han, T., Pitsillides, A. (2021). From hot-spots towards
experience-spots: Leveraging on users’ sociocultural experiences to enhance security in cued-recall graphical
authentication, International Journal of Human-Computer Studies, 149

58

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. 2019. "I Recall this Picture": Understanding Picture
Password Selections based on Users’ Sociocultural Experiences. In IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2019), ACM Press, 408-412

Constantinides, A., Pietron, A., Belk, M., Fidas, C., Han, T., Pitsillides, A. 2020. A Cross-cultural Perspective
for Personalizing Picture Passwords. In Proceedings of the 28th ACM Conference on User Modeling,
Adaptation and Personalization (UMAP 2020), ACM Press, 43-52

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.
2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 3213-3223.

Daniel Lowe Wheeler. 2016. Zxcvbn: low-budget password strength estimation. In Proceedings of the 25th
USENIX Conference on Security Symposium (SEC'16). USENIX Association, USA, 157-173.

De Luca, A., Von Zezschwitz, E., Pichler, L., Hussmann, H. Using fake cursors to secure on-screen password
entry. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2013), 2399-2402.

DeMott, J. “The evolving art of fuzzing,” in Proc. DEF CON Conf., vol. 14, 2006, pp. 1-25.

Eikey, E. V., Murphy, A.R., Reddy, M.C., Xu, H. (2015). Designing for privacy management in hospitals:
Understanding the gap between user activities and IT staff’s understandings. International Journal of Medical
Informatics, 84(12), 1065-1075

Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International journal of Computer Vision, 88(2), 303-338.

Fidas, C., Belk, M., Portugal, D., Pitsillides, A. (2021). Privacy-preserving biometric-driven data for student
identity management: Challenges and approaches. ACM User Modeling, Adaptation and Personalization
(UMAP 2021 Adjunct), ACM Press, 368-370, doi: 10.1145/3450614.3464470

Fidas, C., Belk, M., Constantinides, C., Constantinides, A., Pitsillides, A. (2021). A field dependence-
independence perspective on eye gaze behavior within affective activities. IFIP TC13 Human-Computer
Interaction (INTERACT 2021), Springer-Verlag, 63-72, doi:10.1007/978-3-030-85623-6_6

Fidas, C., Hussmann, H., Belk, M., Samaras, G. (2015). iHIP: Towards a User Centric Individual Human
Interaction Proof Framework. CHI Extended Abstracts 2015, ACM Press, 2235-2240

Gu, R., Enoiu, E., Seceleanu, C. TAMAA: UPPAAL-based mission planning for autonomous agents. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020

Jadskeld, E. Genetic algorithm in code coverage guided fuzz testing, Dept. Comput. Sci., Univ. Oulu, 2016.

Johnson, J., Seixeiro, S., Pace, Z., van der Bogert, G., Gilmour, S., Siebens, L., Tubbs, K., Microsoft Corp
(2014). Picture gesture authentication. u.S. Patent 8,650,636. Retrieved from
https://google.com/patents/US8910253

Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G. and Avouris, N., 2018. Influences of human cognition
and visual behavior on password strength during picture password composition. In Proceedings of the 2018 CHI
conference on human factors in computing systems (pp. 1-14)

Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N., Cranor, L., Egelman, S. (2011). Of
passwords and people: Measuring the effect of password-composition policies. ACM Conference on Human
Factors in Computing Systems (CHI 2011), ACM Press, 2595-2604

Kuznetsova, A., Rom, H., Alldrin, N. et al. 2020. The open images dataset v4. International Journal of
Computer Vision 128, 1956-1981. DOI: https://doi.org/10.1007/s11263-020-01316-z

Legay, A., Delahaye, B., Bensalem, S. Statistical model checking: An overview. In: International Conference on
Runtime Verification. pp. 122-135. Springer (2010)

59

Leon, B., Bostjan, B. (2019). Rejecting the death of passwords: Advice for the future. Computer Science and
Information Systems, 16(1), 313-332

Mare, S., Baker, M., Gummeson, J. (2016). A study of authentication in daily life. Symposium on Usable
Privacy and Security (SOUPS 2016), USENIX Association, 189-206

Mason, J., Dave, R., Chatterjee, P., Graham-Allen, I., Esterline, A., Roy, K. (2020). An investigation of
biometric authentication in the healthcare environment. Array 8, 100042

Noomene Ben Henda. 2014. Generic and efficient attacker models in SPIN. In Proceedings of the 2014
International SPIN Symposium on Model Checking of Software (SPIN 2014). ACM, New York, NY, USA, 77-
86. Doi: http://dx.doi.org/10.1145/2632362.2632378

Paivio, A. (2006). Mind and its evolution: A dual coding theoretical approach. Lawrence-Erlbaum, Mahwah, NJ

Paszke, A., Gross, S., Massa, F. et al. 2019. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, 8024-8035.

Serums Deliverable 5.1 - Initial Report on Security Metrics and Authentication Policies (2019). Deliverable of
EU Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Serums Deliverable 5.2 - Software on the Initial Verified User Authentication System (2020). Deliverable of EU
Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Serums Deliverable 5.3 - Software on the Refined Verified User Authentication Scheme (2021). Deliverable of
EU Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems”

Squire, L (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and
memory. Journal of Cognitive Neuroscience, 4(3), 232-243

Sternberg, R.J. (2003). Cognitive theory. Thomson Wadsworth, Belmont, CA

Tari, F., Ozok, A. A., Holden, S. H. A comparison of perceived and real shoulder-surfing risks between
alphanumeric and graphical passwords. In Proceedings of the second symposium on Usable privacy and security
(2006), 56-66.

Tsung-Yi, L., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan D., Dollar, P., Zitnick, C.L. 2014.
Microsoft coco: Common objects in context. In European Conference on Computer Vision. Springer, 740-755

Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1-25

Tyng, C. M., Amin, H. U., Saad, M. N., Malik, A. S. The influences of emotion on learning and memory.
Frontiers in psychology 8 (2017), 1454

Uppaal (2022). http://www.uppaal.org

Van Rooij, O., Charalambous, M. A., Kaizer, D., Papaevripides, M., & Athanasopoulos, E. (2021). webFuzz:
Grey-Box Fuzzing for Web Applications. Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Williams, H. L., Conway, M. A., Cohen, G. (2008). Autobiographical memory. In Cohen, G., Conway, M.A.
(Eds.), Memory in the Real World (3rd ed.), 21-90, Hove, UK: Psychology Press

Yue, Q., Ling, Z., Fu, X,, Liu, B., Ren, K., Zhao, W. Blind recognition of touched keys on mobile devices. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (2014), 1403-1414

Zakaria, N. H., Griffiths, D., Brostoff, S., Yan, J. Shoulder surfing defence for recall-based graphical passwords.
In Proceedings of the seventh symposium on usable privacy and security (2011), pp. 1-12.

Zhao, Z., Ahn, G.J., Seo, J.J. and Hu, H., 2013. On the security of picture gesture authentication. In Presented as
part of the 22nd {USENIX} Security Symposium ({USENIX} Security 13) (pp. 383-398).

60

ABBREVIATIONS

2FA
API
CSS
HMAC
HTML
HTTP
JSON
MAC
PGA
POC
QR
RFID
SHA-256
SsL
TLS
TOTP
ul

UX
WSGI

Two-Factor Authentication
Application Programming Interface
Cascade Style Sheets

Hash-based Message Authentication Code
Hypertext Mark-up Language
Hypertext Transfer Protocol
JavaScript Object Notation
Message Authentication Code
Picture Gesture Authentication
Proof-of-Concept

Quick Response

Radio Frequency Identification
Secure Hash Algorithm

Secure Sockets Layer

Transport Layer Security
Time-based One-Time Password
User Interface

User Experience

Web Server Gateway Interface

61

APPENDIX A — Contributions to Research Publications based on
Activities within Work Package 5

Belk, M., Fidas, C., Katsi, E., Constantinides, A., Pitsillides, A. (2021). An empirical study of picture
password composition on smartwatches. IFIP TC13 Human-Computer Interaction (INTERACT
2021), Springer-Verlag, 655-664, doi: 10.1007/978-3-030-85610-6_37

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2021). Understanding insider attacks in
personalized picture password schemes. IFIP TC13 Human-Computer Interaction (INTERACT
2021), Springer-Verlag, 722-731, doi: 10.1007/978-3-030-85610-6_42

Fidas, C., Belk, M., Constantinides, C., Constantinides, A., Pitsillides, A. (2021). A field dependence-
independence perspective on eye gaze behavior within affective activities. IFIP TC13 Human-
Computer Interaction (INTERACT 2021), Springer-Verlag, 63-72, doi:10.1007/978-3-030-85623-6_6

Leonidou P., Constantinides A., Belk M., Fidas C., Pitsillides A. (2021). Eye gaze and interaction
differences of holistic versus analytic users in image-recognition human interaction proof schemes.
Human-Computer Interaction International (HCII 2021) — HCI for Cybersecurity, Privacy and Trust,
LNCS, Springer-Verlag, 66-75, doi: 10.1007/978-3-030-77392-2_5

Constantinides, C., Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2021). A comparative
study among different computer vision algorithms for assisting users in picture password
composition. ACM User Modeling, Adaptation and Personalization (UMAP 2021 Adjunct), ACM
Press, 357-362, doi: 10.1145/3450614.3464474

Fidas, C., Belk, M., Portugal, D., Pitsillides, A. (2021). Privacy-preserving biometric-driven data for
student identity management: Challenges and approaches. ACM User Modeling, Adaptation and
Personalization (UMAP 2021 Adjunct), ACM Press, 368-370, doi: 10.1145/3450614.3464470

Constantinides, A., Fidas, C., Belk, M., Pietron, A., Han, T., Pitsillides, A. (2021). From hot-spots
towards experience-spots: Leveraging on users’ sociocultural experiences to enhance security in cued-
recall graphical authentication. International Journal of Human-Computer Studies, 149, Elsevier. doi:
10.1016/j.ijhcs.2021.102602

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). Design and Development of a Patient-
centric User Authentication System. Adaptive and Personalized Privacy and Security Workshop
(APPS 2020), UMAP (Adjunct Publication).doi: 10.1145/3386392.3399564

Constantinides, A., Pietron, A., Belk, M., Fidas, C., Han, T., Pitsillides, A. (2020). A Cross-cultural
Perspective for Personalizing Picture Passwords. ACM User Modeling, Adaptation and
Personalization (UMAP 2020), ACM Press, 43-52, doi: 10.1145/3340631.3394859

Costi, A., Belk, M., Fidas, C., Constantinides, A., Pitsillides, A. (2020). CogniKit: An Extensible
Tool for Human Cognitive Modeling based on Eye Gaze Analysis. ACM Intelligent User Interfaces
(IUI Companion 2020), ACM Press, 130-131, doi: 10.1145/3379336.3381460

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2020). An eye gaze-driven metric for
estimating the strength of graphical passwords based on image hotspots. ACM Intelligent User
Interfaces (IUl 2020), ACM Press, 33-37, doi: 10.1145/3377325.3377537

Janjic, V., Bowles, J.K.F., Vermeulen, A. F., Silvina, A., Belk, M., Fidas, C., Pitsillides, A., Kumar,
M., Rossborry, M., Vinov, M., Given-Wilson, T., Legay, A., Blackledge, E., Arredouani, R.,

62

Stylianou, G., Huang, W. (2019). The SERUMS tool-chain: ensuring security and privacy of medical
data in smart patient-centric healthcare systems. (IEEE Big Data), Los Angeles, December 2019,
IEEE Press. doi: 10.1109/BigData47090.2019.9005600

Fidas, C. (2019). Eye tracking based cognitive-centered user models. ACM Conference on Web
Intelligence (W1 2019), ACM Press, 433-437. doi: 10.1145/3350546.3352563

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2019).“I Recall this Picture”: Understanding
Picture Password Selections based on Users’ Sociocultural Experiences. ACM Web Intelligence (WI
2019), ACM Press, 408-412. doi: 10.1145/3350546.3352557

Fidas, C., Belk, M., .Hadjidemetriou,G., Pitsillides A. (2019). Influences of Mixed Reality and
Human Cognition on Picture Passwords: An Eye Tracking Study Published by Springer Nature
Switzerland AG 2019 D. Lamas et al. (Eds.): (INTERACT 2019), LNCS 11747, pp. 304-313, 2019.
doi: 10.1007/978-3-030-29384-0_19

Diomedous, C., Athanasopoulos E. (2019). Practical Password Hardening Based on TLS.Springer
Nature Switzerland AG 2019 R. Perdisci et al. (Eds.): (DIMVA 2019), LNCS 11543, pp. 441-460,
2019. doi: 10.1007/978-3-030-22038-9_21

Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. (2019). On the accuracy of eye gaze-driven
classifiers for predicting image content familiarity in graphical passwords. ACM User Modeling,
Adaptation and Personalization (UMAP 2019), ACM Press, 201-205. doi: 10.1145/3320435.3320474

Janjic, V., Bowles, J.K.F., Belk, M., Pitsillides. A. (2019). Security And Privacy Of Medical Data:
Challenges For Next-Generation Patient-Centric Healthcare Systems. (UMAP 2019) Adjunct:
Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization June
2019 Pages 213-214. doi: 10.1145/3314183.3326364

Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2019). On the Personalization of Image
Content in Graphical Passwords based on Users’ Sociocultural Experiences: New Challenges and
Opportunities. Adaptive and Personalized Privacy and Security Workshop (APPS 2019), UMAP
(Adjunct Publication), 199-202. doi: 10.1145/3314183.3324966

Belk, M., Fidas,C., Pitsillides. A. (2019). Flexpass: Symbiosis of seamless user authentication
schemes in lot. In Extended Abstracts of the (CHI 2019). doi: 10.1145/3290607.3312951

Hadjidemetriou, G., Belk, M., Fidas, C., Pitsillides, A. (2019). Picture passwords in mixed reality:
Implementation and evaluation (2019). ACM SIGCHI Human Factors in Computing Systems (CHI
2019), ACM Press. doi: 10.1145/3290607.3313076

63

APPENDIX B - Prototype Design of the User Interfaces

In this section, we provide prototypes of the main User Interfaces (Ul) of the final version of the user
authentication system according to User Experience (UX) principles, heuristics and trends. Aiming to
build an easy to use and usable user authentication system that can be deployed on heterogenous
devices, fundamental UX principles were considered for the design of the Ul interfaces. Focus will be
given on using a simple language for communicating information and feedback to the end-users,
avoiding technical terms. The Uls have been designed focusing on functional and hedonic aspects.

Ul of the FlexPass Homepage and Demonstration Page

SERUMS Smart Health Centre System (3 Home () Contact us @ Osonve {Puogin

Welcome to EU Horizon 2020 Serums

Welcome to FlexPass, a novel authentication system that allows users to
create secret picture passwords. Instead of remembering long text
passwords, the only thing you need to remember is 3 secret spots on an
image by drawing them on the image.

In addition, in case you like to use textual passwords, you can also create a
secret passphrase which you can use to flexibly switch between your
picture password in order to login.

EXAMPLE

You can draw any combination of 3 of the following gestures on the image.
Memorize the size, the position, the directionality, and the ordering of your
gestures. These gestures will be your secret picture password.

) Single Tap

/ Straight Line

O S

Figure 40. Homepage screen introducing the FlexPass paradigm.

SERUMS Smart Health Centre System (g} Home (7 Contact us @ Osionup {Plogin

Demonstration

Step 2: Confirm your picture password

To confirm your secret picture password, please
repeat the 3 gestures.

Gesture:

Restart

Strength: Very strong

Figure 41. Demonstration page in which users can familiarize with the graphical password creation in
the FlexPass system.

64

Ul of the System Administrator’s Page

SERUMS Smart Health Centre System 09

System Administration

Sign in to continue to Admin Dashboard

Usemname (¥
Web key (%)

Organization (%)

Figure 42. System administrator’s login page.

SERUMS Smart Health Centre System

User Registration Account Verification Account Reset
Jser Registration Form

Username (%)

Organization (%}

USTAN

Role 7]
PATIENT v

Identity)

Date of birth
dd/mm/yyyy [w]

Figure 43. Administrator’s user account creation page in which system administrators create new
accounts for end-users of their organization and their corresponding role (i.e., patient, medical staff,
system administrator).

65

SERUMS Smart Health Centre System @ 1 ogout

Dashboard

User Registration Account Verification Account Reset

Username (%)

Figure 44. End-users can contact helpdesk and request from system administrators to get a new
account verification code on their email. Accordingly, administrators can use the above Ul to send an
account verification code to a particular end-user’s email.

SERUMS Smart Health Centre System @ g ovout

Dashboard

User Registration Account Verification Account Reset
erification Code

Username (%)

Figure 45. System administrators can send a verification code to an end-user’s email. Accordingly,
the end-user can use the code received in their email during account verification.

66

SERUMS Smart Health Centre System

@ g Looon

Dashboard

User Registration Account Verification Account Reset

Send Reset Code

Username (%)

Figure 46. System administrators can send a reset code to an end-user’s email. Accordingly, the end-
user can use the code received in their email during reset password of their account.

Ul of the User Account Registration Page

SERUMS Smart Health Centre System {3} Home @ Contact us @ 0 signup {JjLogin

Sign Up

Registration Form

Accept v

The data collected during user interactions will be stored
anonymously and will be used only for research purposes. We
assure that all personal data collection and processing by our
research group will be carried out according to EU and national
legislation. If you do not wish your data to be recorded, please
select the Decline option in the Consent field.

Figure 47. User account registration page. Once a user account has been created by the system
administrator, an email is sent to the end-user along with an activation page in which the user is
redirected to start creating his/her password.

67

Ul of the Graphical Password Creation Page

SERUMS Smart Health Centre System {3y Home (7) Contact us (] O sisnup {JLogin

Image Selection

Select a background image that will be used during your picture password creation.

Figure 48. Image selection for graphical password creation. This page illustrates a set of images
illustrating content that is highly relevant to the users’ everyday activities and experiences within their
healthcare environments. End-users select their preferred image, which is used to create their
graphical password.

SERUMS Smart Health Centre System {3} Home @Conu:t us @j 0 signUp {JjLogin

Password Creation
Step I: Create your picture password

Draw 3 gestures on the image. You could use any
combination of Circles, Straight Lines, and Taps.
(Glicks)

Memorize the size, location, and direction of your
gestures - and the order in which you drew them.
These gestures will be your secret picture
password.

Each drawn gesture will be temporarily displayed
on the image as an indication of what was
captured by the system.

Gesture:

1

Figure 49. Graphical password creation. End-users create their graphical password by creating a set
of secret gestures on the image (gestures can be a combination of tabs, lines and circles).

68

Ul of the Textual Password Creation Page

SERUMS Smart Health Centre System {3} Home (1) Contact us @ Osonvp {Progin

Set a Passphrase

In case you like to use textual passwords, you can also create a
secret passphrase (minimum 16 characters long) which you can
use to flexibly switch between your picture password in order to
login.

In order to make your password more memorable, we suggest
reflecting the secret you created in the picture password as your
passphrase. For example: ‘the day | had lunch with my friends at
the cafeteria”

Show strength

Figure 50. Passphrase creation page. End-users can optionally create a textual passphrase as an
alternative type for authentication by reflecting their secret used in the graphical password creation,
which can then be used to switch between types of passwords (graphical vs. textual) during login.

Ul of the Two-Factor Authentication Activation Page

SERUMS Smart Health Centre System {3} Home @Com:t us @ o signup {fjLogin

Set Second Factor

In order to make the access to your account more secure, you
could set up a second factor for authentication that will be an
additional proof in order to login.

Mobile Application v

Requires the installation of the application on your
smartphone. Search for Serums Authenticator on the App
store and Play store.

& AppStore ™ Google Play

Figure 51. Two-factor authentication activation page. In order to add an additional factor for
authentication, end-users can setup two-factor authentication by downloading and installing a mobile
application on their smartphone that has been developed for this purpose. The smartphone’s mobile
application can then be used as a second factor for authentication during login.

69

SERUMS Smart Health Centre System (3} Home. @c.:mm us @ 05lgn Up {fiLogin

Enroll Device

Scan the following QR code to enroll your device.

If you experience any problem with the QR code, you could use
the following enroll code to enroll your device.

Enroll Code: 021854

Figure 52. QR code for enrolling the user’s smartphone device for two-factor authentication.

Ul of the User Login Page

SERUMS Smart Health Centre System {3} Home @Cﬂnu:lus (f, g signup {JLogin

FlexPass - Personalized Picture Passwords

Sign in to continue

Username

Forgot password?
Don't have an account? Sign up

Figure 53. Sign in page based on the end-user’s username.

70

SERUMS Smart Health Centre System gy Home (i) Contact us @; O signup {Jrogin

FlexPass - Personalized Picture Passwords

Sign in to continue

Username

test_patient@st-andrews.ac.uk

Use Passphrase
Use Picture Password

Don't have an account? Sign up

Figure 54. Sign in page in which the users select their preferred authentication type (graphical or
textual).

SERUMS Smart Health Centre System g3y Home () Contact us

@ ©Osionup {PLogin

Howdy, test_patient@st-andrews.ac.uk

Please enter your secret picture password to login. |

Gesture:

1

Figure 55. User graphical password login page. End-users enter their graphical password by creating
gestures on the image that were setup during the graphical password creation phase.

71

@ Osonve {Plogin

SERUMS Smart Health Centre System {3y Home (1) Contact us

Login

Please enter your single secret

Figure 56. User textual password login page for end-users that have selected the textual password
type to login.

Ul of the Two-Factor Authentication Login Page

@ Osonup {Progin

SERUMS Smart Health Centre System {3y Home (T) Contactus

Two-Factor Authentication

Please select your preferred second factor of authentication.

Selecting the Push Notification option will require you ta review a
notification on the mobile app before granting access to the
Serums system.

Selecting the TOTP Code will require you to open the mobile app
and enter the &-digit code displayed on the screen.

Second factor

Push Notification

Figure 57. Two-factor authentication with push notification in which a push notification is sent to the

end-user’s mobile application for approval.

72

SERUMS Smart Health Centre System {3y Home () Contact us @ O sonup {JLogin

Two-Factor Authentication

Please select your preferred second factor of authentication,

Selecting the Push Notification option will require you to review a
notification on the mobile app before granting access to the
Serums system,

Selecting the TOTP Cade will require you to open the mabile app
and enter the 6-digit code displayed on the screen.

Second factor

TOTP Code v

TOTP Code

Figure 58. Two-factor authentication with a Time-based One-Time Password. The end-user provides
a one-time password code that can be found on the smartphone’s mobile application.

SERUMS Smart Health Centre System (g} Home (1) Contact us G Osionup {JLogin

Request Picture Password Reset

Reset Password Form

Email address (%)

Verification code (*)

Figure 59. End-users can request a reset code in case they forgot their password. The reset code will
be sent in their associated email.

73

Ul of the Mobile Application for Two-Factor Authentication

Serums Authenticator

Serums Authenticator adds an extra
layer of authentication beyond your
passwords

@ . (2] - @9

Each time you login to the Serums system you
will need to either approve a notification that will
be automatically sent to your mobile phone or
use a code that this app generates

ADD ACCOUNT

Figure 60. User account creation and enrolment of the end-user’s device for two-factor
authentication.

74

Select how to enroll

Either scan the provided QR code

or enter manually the enroll code

Enter Enroll

Scan QR Code

Figure 61. Enrolment with QR code or enroliment code. In case the user selects the QR code option,
the mobile application is ready to scan the QR code that is illustrated on the end-user’s Web-based
registration system of FlexPass. In case the user selects the enrollment code option, the user has to

enter the secret code that is also available on the end-user’s Web-based registration system of
FlexPass.

75

Serums Authenticator

Account

test_patient@st-andrews.ac.uk Remove

Authentication Code
561749

9

Valid for: 20 seconds

Figure 62. Time-based One-Time Password on the end-user’s smartphone mobile application that is

automatically reset every 30 seconds. The one-time password can be used by the user during two-
factor authentication login.

76

10146

Friday, 22 April

No Older Notifications

Figure 63. Push notification for two-factor authentication approval to login.

7

Login action required

Allow access to Serums system?

Figure 64. Two-factor authentication approval page. The user either approves or rejects the push
notification of the login attempt.

78

Serums Authenticator

Account

test_patient@st-andrews.ac.uk Remove

Authentication Code
370 781

O

Valid for: 27 seconds

Access granted

Figure 65. Notification after the user accepts the push notification.

79

Confirm remove?

By pressing 'Unpair device', the
second factor for authentication
will be disabled from your Serums
account and the app will close.

Unpair device Cancel

Figure 66. End-users can remove the second factor for authentication if they wish.

80

APPENDIX C — RESTful Application Programming Interface

This section lists all the endpoints of the final version of the user authentication system. Note that this
section provides all the successful scenarios and their respective responses (i.e., 200, 201). The full
list of responses (including for e.g., 400 — Bad Request; 401 — Unauthorized; 500 — Internal Server
Error, etc.), is available at the Serums’ development and testing server.

Base url: https://authentication.serums.cs.st-andrews.ac.uk/ua
Demo: https://authentication.serums.cs.st-andrews.ac.uk/ua/demo

Documentation: https://authentication.serums.cs.st-andrews.ac.uk/ua/doc
Create Admin APl Token

Description: Creates an expiring API token that must be used by the web application to
authorize the requests to the secured endpoints

Endpoint /create_api_token/

Method POST

Headers

accept application/json

Content-Type application/json

Input Parameters (* required) | Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum ["ZMC", "USTAN", "FCRB"]
web_key * string (Web key) [1 .. 500] characters

Output Parameters Type (Description)

message string (A general message description)

resource_name string (The name of the resource)

resource_str string (A string value associated with the resource_name)
resource_expires_in_sec float (The expiration time in seconds)

Example Call

Request

Schema application/json

Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/create_api_token/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\":
\"admin@test.com\", \"organization\": \"USTAN\", \"web_key\":
\"6HRrEPetK6UadiSnmtHFLUmnw5CN1Hi9su9LQvpF7peR8hBuOa\"}"

Response

Schema application/json

Description Expiring API Token has been created successfully. The value is returned in
resource_str and expires in resource_expires_in_sec seconds.

Status Code 201

Body {

"message": "Expiring APl Token has been created successfully. The value
is returned in ‘resource_str’ and expires in ‘resource_expires_in_sec’
seconds.",

"resource_name": "token",

"resource_str": " 68b9d94424b118c6d3606320d20da2ac8721c297",

"resource_expires_in_sec": 601126.755196}

81

Register Serums User

Description: Creates a new Serums user instance

Endpoint /register_user/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Token: <Expiring APl Token>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

organization *

string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

role *

string (Role) Enum ["HOSPITAL_ADMIN", "MEDICAL_STAFF", "PATIENT"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_int

integer (An integer value associated with the resource_name)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/register_user/" -H "accept: application/json" -H
"Authorization: Token 6809d94424b118c¢6d3606320d20da2ac8721c297"
-H "Content-Type: application/json" -d "{ \"username\":
\"test_patient@st-andrews.ac.uk\", \"organization\": \"USTAN\",
\"role\": \"PATIENT\"}"

Response

Schema application/json

Description User has been created successfully. The value is returned in
resource_int.

Status Code 201

Body {

"message": "User has been created successfully. The value is returned
in ‘resource_int".",
n,n

"resource_name": "user",
"resource_int": 371

}

Check Username

Description: Checks whether the provided username can be activated or not based on the

provided verification code

Endpoint /check_username/
Method POST

Headers

accept application/json

Content-Type

application/json

82

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

verification_code *

string (Verification code) [1 .. 50] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_username/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"verification_code\":
\"30ad3f1839e2478cad17d42fc02aa6bbc\"}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user"

}

Set Graphical Password

Description: Sets the graphical password data for the provided user

Endpoint /set_graphical_password/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

graphical_password *

string (Graphical password) [1 .. 200] characters

time_started_creation *

Integer (Time started creation) [0 .. 9223372036854776000]

time_finished_creation *

Integer (Time finished creation) [0 .. 9223372036854776000]

time_first_gesture_started *

Integer (Time first gesture started) [0 .. 9223372036854776000]

time_first_gesture_fin *

Integer (Time first gesture finished) [0.. 9223372036854776000]

time_second_gesture_started *

Integer (Time second gesture started) [0.. 9223372036854776000]

time_second_gesture_fin *

Integer (Time second gesture finished) [0 .. 9223372036854776000]

time_third_gesture_started *

Integer (Time third gesture started) [0 .. 9223372036854776000]

time_third_gesture_fin *

Integer (Time third gesture finished) [0 .. 9223372036854776000]

total_time_creation *

Integer (Total time creation) [0.. 9223372036854776000]

total_time_creation_with_confirm
*

Integer (Total time creation with confirm) [0.. 9223372036854776000
]

total_time_first *

Integer (Total time first gesture) [0 .. 9223372036854776000]

total_time_second *

Integer (Total time second gesture) [0 .. 9223372036854776000]

total_time_third *

Integer (Total time third gesture) [0 .. 9223372036854776000]

83

total_failed_attempts *

Integer (Total failed attempts) [0 .. 9223372036854776000]

total_restart_attempts *

Integer (Total restart attempts) [0 .. 9223372036854776000]

total_time_creation_task *

Integer (Total time creation task) [0 .. 9223372036854776000]

timestamp_page_load *

Integer (Timestamp page load) [0 .. 9223372036854776000]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_graphical_password/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\",
\"graphical_password\": \"#1|T|55,2942|T|67,22#3|T|93,47\",
\"time_started_creation\": 195, \"time_finished_creation\": 13244,
\"time_first_gesture_started\": 6598, \"time_first_gesture_fin\":
7451, \"time_second_gesture_started\": 8536,
\"time_second_gesture_fin\": 9758, \"time_third_gesture_started\":
11724, \"time_third_gesture_fin\": 12782, \"total_time_creation\":
6184, \"total_time_creation_with_confirm\": 9315,
\"total_time_first\": 853, \"total_time_second\": 1222,
\"total_time_third\": 1058, \"total_failed_attempts\": O,
\"total_restart_attempts\": 0, \"total_time_creation_task\": 14894,
\"timestamp_page_load\": 1650548204}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user"

}

Retrieve Graphical Info

Description: Retrieves the graphical information (image_id and image_type)

Endpoint /retrieve_graphical_info/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

image_id

integer (The ID of the image)

image_type

string (The type of the image)

84

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_graphical_info/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response

Schema application/json

Description Success

Status Code 200

Body {
"message": "Success",
"resource_name": "image",
"image_id": 1,
"image_type": "retrospective"

}
Create JIWT

Description: Creates a JSON Web Token if the provided credentials are correct

Endpoint /create_jwt/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username * string <email> (Username) non-empty
password * string (Password) non-empty
login_type * string (The type of login) Enum ["TEXT", "GRAPHICAL"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_obj

object (A dictionary that contains the JWT in the form of key-value
pairs. The key access is a string that corresponds to the JWT access
token and the key refresh is a string that corresponds to the JWT
refresh token.)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/create_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\":
\"test_patient@st-andrews.ac.uk\", \"password\":
\"#1|T|55,29#2|T|67,22#3|T|93,47\", \"login_type\":
\"GRAPHICAL\"}"

Response
Schema application/json
Description JSON Web Token has been created successfully. The value is returned

in resource_obj.

85

Status Code

201

Body

{
"message": "JSON Web Token has been created successfully. The
value is returned in ‘resource_obj.",
"resource_name": "jwt",
"resource_obj": {

"access":
"eyJ0eXAiOiJKV1QiLCIhbGciOiJlUzI1NiJ9.ey)0b2tlbI90eXBIljoiYWNjZXNz
liwizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5SMzE4NjNjZTQyNjUONmE4Y
WU4AMzNmMYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MiOiIJTZXJ1bXN
BdXRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODKONSwic3ViljoidGVz
dFOWYXRpZW50QHNOLWFuUZHJId3MuYWMudWSsiLCIncm91cElEcyl6 Wy
JQQVRJRU5UII0sIm9yZ0IEljoiVVNUQU4ILCIkZXBOSUQiIOmM51bGwsIimRlic
HROYW1lljpudWxsLCJzdGFmZKIEljpudWxsLCIuYW1lljpudWxsLCIhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMud
WsvIn0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrPQ",

"refresh™:
"eyl0eXAiOiJKV1QiLCIhbGciOillUzI1NiJ9.eyJ0b2tIbI90eXBlljoicmVmemV
zaClsImV4cCI6MTY4MjA4ANDKONSwianRpljoiY2lyNTUWZWVKNmMmM5ND
YwZjk0OTY4ZjQ3ZGI30TMANTAILCJ1c2VySUQiOjM3MSwiaXNzljoiU2Vy
dW1zQXV0aGVudGljYXRpb24iLCIpYXQiOjE2NTAINDg5NDUsINN1Yil6In
RIc3RfcGFOaWVudEBzdC1hbmRyZXdzLmFjLnVrliwiZ3JvdXBJRHMIiOIlsiUE
FUSUVOVCJdLCIvemdJRCIBIIVTVEFOIliwiZGVwWdEIEIjpudWxsLCIkZXBOTm
FtZSI6bnVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkljoiaH
ROcHM6Ly9zaGNzLnNIcnVtcy5jcy5zdC1lhbmRyZXdzLmFjLnVrLy)9.SO5Y
VEQtBI4-KZGTTjDsV-ognylun93VWIJjRC5rF3cE"

}
}

Set Graphical Info

Description: Sets the image_id and the image_type for the user

Endpoint /set_graphical_info/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JIWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

image_type *

string (Image type) [1.. 13] characters

image_id *

integer

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_graphical_info/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWN;ZXNzli

86

wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmME4YW
U4AMzNmMYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MIiOIJTZXJ1bXNB
dXRoZW50aWNhdGlvbilsImIhdCI6MTY1MDUOODKONSwic3ViljoidGVzd
FOWYXRpZWS50QHNOLWFuZHJId3MuYWMudWSsiLCIncm91cEIEcyl6WYy)
QQVRJRU5UIIOsIM9yZO0IEljoiVVNUQUA4iLCIkZXBOSUQIOM51bGwsIimRlc
HROYW1lljpudWxsLCJzdGFmZKIEljpudWxsLCJuYW1lljpudWxsLCIhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMud
WsvIn0.gXgQpOAghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H
"Content-Type: application/json" -d "{ \"image_type\":
\"retrospective\", \"image_id\": 1}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user"

}

Set Passphrase

Description: Sets the single_secret passphrase for the provided user

Endpoint /set_passphrase/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JIWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

single_secret *

string (Single secret) [1.. 500] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_passphrase/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBIlljoiYWN;ZXNzli
wiZXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4N]NjZTQyNjUONmME4YW
U4AMzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MIiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODKONSwic3ViljoidGVzd
FOWYXRpZW50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cEIEcyl6WY)
QQVRJRU5UIIOsIm9yZ0IEIjoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIc
HROYW 1lljpudWxsLClzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCIhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMud
WsvIn0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0Q" -H
"Content-Type: application/json" -d "{ \"single_secret\": \"The day |
had lunch at the hospital\"}"

Response

87

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user"

}

Set Second Factor

Description: Sets the second_factor for the user

Endpoint /set_second_factor/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

second_factor *

string (The type of login) Enum ["MOBILE", "TOTP"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/set_second_factor/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLClhbGciOiJlUzI1NiJ9.eyl0b2tIbl90eXBlljoiYWNZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5SMzE4NjNjZTQyNjUONmME4YW
U4MzNmYjZmZmNiYzkyMSIsIinVzZXJJRCI6EMzcxLClpc3MIiOiJTZXJ1bXNB
dXRoZW50aWNhdGIvbilsimlhdCI6MTY1MDUOODKONSwic3ViljoidGVzd
FOWYXRpZW50QHNOLWFuUZHJId3MuYWMudWSsiLCIncm91cEIEcyl6WYy)
QQVRJRU5UII0sIm9yZ0IEljoiVVNUQU4ILCIkZXBOSUQiOM51bGwsImRlIc
HROYW 1lljpudWxsLClzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCIhdWQi
OiJodHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuzZHJId3MuYWMud
WsvIn0.gXgQp0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrPQO" -H
"Content-Type: application/json" -d "{ \"second_factor\":
\"MOBILE\"}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user"

}

88

Check Passphrase Set

Description: Checks whether the passphrase was set or not for the provided username

Endpoint /check_passphrase_set/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_already_activated

boolean (True if resource is already activated, else False.)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_passphrase_set/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response

Schema application/json

Description Success

Status Code 200

Body {
"message": "Success",
"resource_name": "passphrase",
"resource_already_activated": true

}
Refresh JWT

Description: Uses the longer-lived refresh token to obtain another access token

Endpoint [refresh_jwt/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

refresh *

string (Refresh) non-empty

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_str

string (A string value associated with the resource_name)

Example Call

Request

89

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/refresh_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"refresh\":
\"eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1Ni)9.eyJOb2tlbl90eXBlljoicmVmem
VzaClsImV4cCI6MTY4MjA4NDkONSwianRpljoiY2lyNTUwWZWVKNmMMS5ND
YwZjk0OTY4ZjQ3ZGI30TMANTAILCI1c2VySUQiOjM3MSwiaXNzljoiU2Vy
dW1zQXV0aGVudGljYXRpb24iLCIpYXQiOjE2NTAINDg5NDUsInN1Yil6InR
Ic3RfcGFOaWVudEBzdC1lhbmRyZXdzLmFjLnVrliwiZ3JvdXBJRHMIiOIsiUEF
USuVvoVvCJdLClvemdJRCIGHIVTVEFOliwiZGVwdEIEljpudWxsLCIkZXBOTmF
tZSI6bnVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkljoiaHRO
cHM6Ly9zaGNzLnNIcnVtcy5jcy5zdClhbmRyZXdzLmFjLnVrLyJ9.SO5YVEQ
tBI4-KZGTTjDsV-ognylun93VWIJjRC5rF3cE\"}"

Response

Schema application/json

Description JSON Web Token has been created successfully. The value is returned in
resource_str.

Status Code 201

Body {

"message": "JSON Web Token has been created",

"resource_name": "jwt",

"resource_str":
"eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.ey)0b2tIbI90eXBlljoiYWN;jZXNzI
iwizZXhwljoxNjUzMTQxNDQ2LCJqdGkiOil1MjkwYTImNDg3ZTUONDKA4Y]B
MNMIXZTcwOTAXNTBINSIsInVzZXJJRCI6EMzcxLCIpc3MiOIJTZXJ1bXNBAXR
0ZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODKONSwic3ViljoidGVzdFOwY
XRpZW50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cElEcyl6WyJQQVRIJ
RU5UII0OsIm9yZO0IEljoiVVNUQU4iLCIkZXBOSUQIOM51bGwsImRICHROYW
1ljpudWxsLClzdGFmZKIEljpudWxsLCJuYW 1lljpudWxsLCIhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvInO.c
N25G4kb-NyclOHVct4h5bZVIwbmB2BnGM8T5KcWi98"

}

Check Second Factor Set

Description: Checks whether the second factor was set or not by the user

Endpoint /check_second_factor_set/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_str

string (A string value associated with the resource_name)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_second_factor_set/" -H "accept:

90

application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJIhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzli
wiZXhwljoxNjuzMTQwOTQ1LCJqdGkiOil5MzE4ANjNjZTQyNjUONmME4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cEIEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLCIzdGFmZKIEljpudWxsLCJuYW1ljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",
"resource_name": "second_factor",

"resource_str": "MOBILE"

}

Store Graphical Login Attempt

Description: Stores the graphical login attempt

Endpoint /store_graphical_login_attempt/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) non-empty

total_failed_attempts *

integer (Total failed attempts) [0 .. 2147483647]

is_reset *

boolean (Is reset)

is_reset_from_main_page *

boolean (Is reset from main page)

total_time_until_submit *

integer (Total time until submit) [0 .. 9223372036854776000]

total_time_until_successful_login
*

integer (Total time until successful login) [0 .. 9223372036854776000]

time_interaction_started *

integer (Time interaction started) [0.. 9223372036854776000]

total_time_since_page_load *

integer (Total time since page load) [0 .. 9223372036854776000]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/store_graphical_login_attempt/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLClhbGciOiJlUzI1NiJ9.eyJ0b2tIbl90eXBlljoiYWNZXNzli

91

wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmE4YW
U4AMzNmMYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cEIEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLClzdGFmZKIEljpudWxsLCJuYW1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfgrP0" -H "Content-
Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"total_failed_attempts\": 0, \"is_reset\": false,
\"is_reset_from_main_page\": false, \"total_time_until_submit\":
16792, \"total_time_until_successful_login\": 1254,
\"time_interaction_started\": 108, \"total_time_since_page_load\":
22755}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",
"resource_name": "GRAPHICAL"

}

Store Passphrase Login Attempt

Description: Stores the passphrase login attempt

Endpoint /store_passphrase_login_attempt/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) non-empty

is_failed_attempt *

boolean (Is failed attempt)

is_reset *

boolean (Is reset)

total_time_until_submit *

integer (Total time until submit) [-9223372036854776000 ..
9223372036854776000]

total_time_until_submit_since_p
age_load *

integer (Total time until submit since page load) [-
9223372036854776000 .. 9223372036854776000]

time_interaction_started *

integer (Time interaction started) [-9223372036854776000 ..
9223372036854776000]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/store_passphrase_login_attempt/" -H "accept:
application/json" -H "Authorization: Bearer

92

eyJ0eXAiOiJKV1QiLCJIhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmE4YW
U4AMzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cEIEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLCJzdGFmZkIEljpudWxsLCIuYW1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfgrP0" -H "Content-
Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"is_failed_attempt\": false, \"is_reset\": false,
\"total_time_until_submit\": 4568,
\"total_time_until_submit_since_page_load\": 12786,
\"time_interaction_started\": 1208}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",
"resource_name": "TEXTUAL"

}

Request Device Enroll

Description: Returns an activation code as a QR code PNG image for the user

Endpoint /request_device_enroll/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_obj_qr

object (A dictionary that contains information about the QR code in the
form of key-value pairs. The key img_byte_str is a base64 encoded
string that corresponds to the image bytes. The key qr_img_id is a string
that corresponds to the image id. The key enroll_text_id is a string that
corresponds to the enroll id as text.)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_device_enroll/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWN;ZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmE4YW
U4MzNmY;jZmZmNiYzkyMSIsIinVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGIvbilsimlIhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cElEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO

93

YW1lljpudWxsLCJzdGFmZkIEljpudWxsLCIuYW1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response

Schema application/json

Description QR code has been created successfully. The value is returned in
resource_obj_gr.

Status Code 201

Body {

"message": "QR code has been created successfully. The value is
returned in ‘resource_obj_gr’.",

"resource_name": "QR",

"resource_obj_qr": {

"qr_img_byte_str":
"iVBORWOKGgoAAAANSUhEUgAAACIAAAHCAQAAAABUY/ToAAADIUIEQ
VR4n02cW4rcSBBFTOWK6jMLegGIFGInwyxpdiAtxQswZH4aJMIf+ZBUb
WMw1e7q800PgZAOkiDIUPFIMfN7tvzzmyCIFCISpEiRIkU+HmnVBsxsALK
ZTWxmE8By3cym306aPvhtRT4Wibu7M7q7ewruc9xPwd1XgOCMKfjh5vI
zfafl9ydzX1+yGesVWF7dWezijGkzn6GtUnd6psjnllebc40OwGmyDjwisTC8
UI7rfMOU+OTmmzSAP3XM2e/dninwKMrr7DLBcgwPBKe4Tiwhym9jl0X2
eKfKpyMXMzK7AmOrB/vlyccgDNuUBYCtp2ce/rciHloseOjQ8ImvAYa2H5
fWbOVak0z1T5HORh9y+LkHUNZaNvtIOLdIRIduLvLXiQ8QVn+NaFE+pFJX
6UArlanGfLo/kQyK7VR/qVhej71KJg0YCgnxISNm6HtoGiAkjrgPkK0as5SLIY
bWih/LLR76tyEckux5a8RngqoUQwgvscqx5iTO2C9JDIk1UfSntUC11THANC
86YVXTKRZ6seAfhM7bkWf6k52C62W1tWPiTyZLumLu5TvaSGthbB2tVZ
mlirkGzusQ56gZfl99i0FVjhKofiQ9JDIsx1iVPGcpnj2GmNdkYpuOjok8tZ8t5|
94emN16KMqjySHhL5U3IxM5tibcofsvw5D1UUzfd+psgnIXtuH20eP6bj6n
PQ2UVOJ5AeENnm2YxjrAqiq696HTX10KLpimcgb2zX1Tchgxer9FFC/TORb
09WHel/D+4jHIVdr7RD5kMiT3daH9pRsHx3qt4DgQylvrfTtjfh1gOgY1LF
GXwycfCOHRgCjpjb0+Lm+U+T7kW32118c8svay+sKsA0/+iGlk4c2IP+5vIPk
HyYHNXIf2bUE2xRWza3CbCO7/IXH8TXulRZ6txTIwyFYCIY1fLm4QnGXaDO
K3spvDxv/Dah/3tilfkTz20mqGdiwl1kljp1PIZSIPtuf21PGz47DHPnRWEjb1
XEX+jCwpfKolxqaMzEq/jGxW+x+ATfd5psgnIQ+zsHWI8b4FKPWaUV+qg+
sys1iGR3W58qDbNOmMmPIVRIWJUYRf6SLH/7iCvI100LDcWRbKJegBXrh3
hbkQ9AVWKPWmM2L7dP5XSi1LYUKZSJPVvIhtZSiT8DGGQw2q/sW6YXpfHE
Dyi2f7TtFvh9p+se5SJEiRYoUKflv)78D2wlIcBrhmclAAAAASUVORKS5CYII="

"gr_img_id": "dae881b5c555464192bb11lec5e0410af",

"enroll_text_id": "BdEpTU"

}
}

Poll Enroll Status

Description: Polls the qr_img_id to detect whether the device was enrolled or not

Endpoint /poll_enroll_status/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

94

gr_img_id *

string (QRimgid) [1 .. 50] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_already_activated

boolean (True if resource is already activated, else False)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_enroll_status/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmME4YW
U4AMzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimIhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cEIEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4ILCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLClzdGFmZKIEljpudWxsLCJuYW 1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.qXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"qgr_img_id\":
\"dae881b5c555464192bb11ec5e0410af\"}"

Response

Schema application/json
Description Device is already activated
Status Code 200

Body {

"message": "Device is already activated",
"resource_name": "device",
"resource_already_activated": false

}

Check Device Enrolled

Description: Checks whether the device is already enrolled or not

Endpoint /check_device_enrolled/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_already_activated

boolean (True if resource is already activated, else False)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_device_enrolled/" -H "accept:

95

application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJIhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzli
wiZXhwljoxNjuzMTQwOTQ1LCJqdGkiOil5MzE4ANjNjZTQyNjUONmME4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZW50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cEIEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLClzdGFmZKIEljpudWxsLCJuYW 1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response

Schema application/json
Description Device is already activated
Status Code 200

Body {

"message": "Device is already activated",
"resource_name": "device",
"resource_already_activated": false

}

Enroll Device

Description: Enrolls the device to the user’s account

Endpoint /enroll_device/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

device_name *

string (Device name) non-empty

device_id * string (Device id) non-empty
enroll_id * string (Enroll id) non-empty
operation * string (Operation) non-empty

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_obj_device

object (A dictionary that contains information about the enrolled device
in the form of key-value pairs. The key totp is a string that will be used
for the time-based one-time passwords. The key username is a string
that corresponds to the username set for the enrolled device. The key
jwt_access is a string that corresponds to the JWT access token that will
be saved on the device. The key jwt_refresh is a string that corresponds
to the JWT refresh token that will be saved on the device.)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/enroll_device/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"device_name\": \"Xioami Mi
9T Pro\", \"device_id\":\"123456\", \"enroll_id\": \"eaa45e70-0fa5-

96

11eb-a8c0-0242ac170005\", \"operation\": \"QR\"}"

Response

Schema application/json

Description Device has been created successfully. The value is returned in
resource_obj_device.

Status Code 201

Body {

"message": "Device has been created successfully. The value is
returned in ‘resource_obj_device'.",

"resource_name": "device",

"resource_obj_device": {

"totp": "d65c042c9b034080",

"username": "test_patient@st-andrews.ac.uk",

"jwt_access":
"eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.ey)0b2tIbI90eXBlljoiYWN;jZXNzI
iwiZXhwljoxNjUzMTQ1O0Tc5LCIqdGkiOil5MGUwY2JmMzdjOTQOZjJiOTJi
YWMINDNhMjVhYmEzNClsInVzZXJJRCIEMzcxLCIpc3MiOiJTZXJ1bXNBdX
RoZW50aWNhdGlvbilsimlhdCI6MTY1MDU1Mzk30Swic3ViljoidGVzdF9w
YXRpZWS50QHNOLWFuZHJId3MuYWMudWsiLCIJncm91cEIEcyl6WyJQQV
RJRU5UII0sIm9yZOIEljoiVVNUQUA4iILCIkZXBOSUQIOM51bGwsImRIcHROY
W1lljpudWxsLClzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCJhdWQiOiJod
HRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvin
0.X3r91_Plh_y_VI9kjeFlkohDuygNiwW_WI-nMpuXJHO0",

"jwt_refresh™:
"eyJ0eXAiOiJKV1QiLCIhbGciOiJlUzI1NiJ9.eyJ0b2tlbl90eXBlljoicmVmecmV
zaClsImV4cCI6MTY4MjA40Tk30SwianRpljoiZTY2YjkxMjIkNDBINGNjOTk
yMzIINWY50Dk3ZDQ1YjciLCJ1c2VySUQiIOjM3MSwiaXNzljoiU2VydW1z
QXV0aGVudGljYXRpb24iLCIpYXQIOjE2NTAINTMS5NzksInN1Yil6InRIc3Rfc
GF0aWVudEBzdC1hbmRyZXdzLmFjLnVrliwiZ3JvdXBJRHMIiOlsiUEFUSUV
OVCJdLCIlvemdJRCIBIVTVEFOIliwiZGVwWAEIEljpudWxsLCIkZXBOTmFtZSI6b
nVsbCwic3RhZmZJRCI6bnVsbCwibmFtZSI6bnVsbCwiYXVkljoiaHROCHM6
Ly9zaGNzLnNIcnVtcy5jcy5zdC1lhbmRyZXdzLmFjLnVrLyJ9.wK1vMOes9Aai
2siGfyFiliisGSIF_wdjL-99N350ilE"

}
}

Map FCM to Device

Description: Maps the Firebase Cloud Messaging token to the user's device.

Endpoint /map_fcm_to_device/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

device_id *

string (Device id) non-empty

fcm_token *

string (Fcm token) [1 .. 255] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

97

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/map_fcm_to_device/" -H "accept: application/json"
-H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzli
wizXhwljoxNjUzMTQ10Tc5LCIqdGkiOilSMGUWY2ImMzdjOTQOZjJiOTIiY
WMINDNhMjVhYmEzNClIsInVzZXJJRCI6MzcxLCIpc3MIiOiJTZXJ1bXNBdIXR
0ZW50aWNhdGlIvbilsimlhdCI6MTY1MDU1Mzk30Swic3ViljoidGVzdFOwY
XRpZW50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cElIEcyl6WyJQQVRIJ
RU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRICHROYW
1ljpudWxsLClzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCIhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvIn0.X
3r9l_Plh_y_VI9kjeFIkohDuygNiwW_WI-nMpuXJHO0" -H "Content-Type:
application/json" -d "{ \"device_id\":\"123456\", \"fcm_token\":
\"dOhnVaEW7AI:APA91bEOHW-u78mkhvrOVk61Rs3zop5Q2J8UL1xVFT-
gLbgeT6xE48ulg_R_ZDmNnEfUHWA4UAIrt6xg1liVF-
4DP1QzfMNRNF3sLNvcJsQEFRQ7iehAxud1QgRkA9c)QgQzORSMDkInV\"}

Response
Schema application/json
Description Success
Status Code 200
Body {
"message": "Success"
}
Submit TOTP

Description: Checks whether the provided TOTP code is verified or not

Endpoint /submit_totp/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JIWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

totp_token *

string (Totp code) [1 .. 6] characters

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_bool

boolean (Returns True/False that is associated with the resource_name)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/submit_totp/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBIlljoiYWN;ZXNzli

98

wiZXhwljoxNjUzMTQ10Tc5LCIqdGkiOiISMGUwWY2)mMzdjoTQOZjJiOTIiY
WMINDNhMjVhYmEzNCIsInVzZXJJRCI6MzcxLClpc3MIiOIJTZXJ1bXNBdXR
0ZW50aWNhdGlvbilsimlhdCI6MTY1MDU1Mzk30Swic3ViljoidGVzdFOwY
XRpZW50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cElEcyl6WyJQQVRIJ
RU5UII0OsIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcCHROYW
1ljpudWxsLClzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCJhdWQiOiJodHR
wczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvIn0.X
3r91_Plh_y_VI9kjeFIkohDuygNiwW_WI-nMpuXJHO0" -H "Content-Type:
application/json" -d "{ \"totp_code\": \"187542\"}"

Response

Schema application/json
Description Authentication response
Status Code 200

Body {

"message": "Authentication response"”,
"resource_name": "Authentication response",
"resource_bool": false

}

Send Push Notification

Description: Sends a push notification to the enrolled device associated with the user

Endpoint /send_push_notification/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JIWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_str

string (A string value associated with the resource_name)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/send_push_notification/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJOb2tIbI90eXBIljoiYWNZXNzli
wizXhwljoxNjUzMTQwOTQ1LCJqdGkiOil5SMzEANjNjZTQyNjUONmME4YW
U4MzNmY;jZmZmNiYzkyMSIsIinVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZWS50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cElEcyl6WyJQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiIOmM51bGwsImRICHRO
YW 1lljpudWxsLCJzdGFmZKIEIjpudWxsLCJuYW1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpOAghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description Success

99

Status Code

200

Body

"message": "Success",
n,on

"resource_name": "authentication_id",
"resource_str": "1ae4d876-0fab-11eb-a8c0-0242ac170005"

}

Poll Auth Push Status

Description: Polls to detect whether the response received from user's device for the
authentication_id is True or False.

Endpoint /poll_auth_push_status/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

authentication_id *

string (Authentication id) non-empty

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_bool

boolean (Returns True/False that is associated with the resource_name)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_auth_push_status/" -H "accept: application/json"
-H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJlUzI1NiJ9.eyJ0b2tIbI90eXBlljoiYWNjZXNzliwi
ZXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmME4AYWU4M
ZNmMYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLCIpc3MiOiJTZXJ1bXNBdXRoZW
50aWNhdGlvbilsImlhdCI6MTY1MDUOODKONSwic3ViljoidGVzdFOwYXRpZ
W50QHNOLWFuUZHJId3MuYWMudWsiLCIncm91cElIEcyl6eWyJQQVRIJRUSUII
0sIm9yZO0IEljoiVVNUQUA4iLCIkZXBOSUQIOM51bGwsImRICHROYW 1lljpudW
xsLCJzdGFmZkIEljpudWxsLCJuYW1lljpudWxsLCIhdWQiOiJodHRwczovL3N
0Y3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvIn0.gXgQpOAghh
KOob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-Type:
application/json" -d "{ \"authentication_id\": \"1ae4d876-0fab-11eb-
a8c0-0242ac170005\"}"

Response

Schema application/json
Description Authentication response
Status Code 200

Body {

"message": "Authentication response",
"resource_name": "Authentication response",
"resource_bool": false

}

100

Two Factor Response

Description: Receives the response from the second factor attempt initiated from the push

notification

Endpoint /two_factor_response/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <IWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

device_id *

string (Device id) non-empty

response *

boolean (Response)

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/two_factor_response/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzliwi
ZXhwljoxNjuzMTQ1OTc5LCIqdGkiOil5MGUwWY2ImMzdjOTQOZjJiOTIiYWM
INDNhMjVhYmEzNClsInVzZXJJRCIEMzcxLCIpc3MiOiJTZXJ1bXNBdXRoZW5
0aWNhdGlvbilsimlhdCI6MTY1MDU1Mzk30Swic3ViljoidGVzdFOWYXRpZW
50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cElEcyl6WyJQQVRIRU5UIIOs
Im9yZO0IEljoiVVNUQUA4iLCIkZXBOSUQIOM51bGwsImRIcHROYW1lljpudWxs
LCJzdGFmMZKIEIjpudWxsLCJuYW 1lljpudWxsLCIhdWQiOiJodHRwczovL3NoY
3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvIn0.X3r91_Plh_y_VI9
kjeFlkohDuygNiwW_WI-nMpuXJHO" -H "Content-Type: application/json"
-d "{ \"device_id\":\"123456\", \"response\": true}"

Response
Schema application/json
Description Success
Status Code 200
Body {
"message": "Success"
}
Verify JWT

Description: Returns the JWT payload {userID, username, grouplDs, orgID, deptID} if the

JWT is successfully verified

Endpoint [verify_jwt/
Method POST

Headers

accept ‘ application/json

101

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message string (A general message description)

grouplDs Array of strings (The group IDs associated with the SERUMS userID)
orglD string (The organization ID associated with the SERUMS userID)
userlD integer (The SERUMS userID)

Example Call

Request

Schema application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/verify_jwt/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.ey)0b2tIbI90eXBlljoiYWNjZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmME4AYW
U4MzNmY;jZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimIhdCI6MTY1MDUOODKONSwic3ViljoidGVzdF9
WYXRpZWS50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cElEcyl6eWylQQ
VRJRU5UII0OsIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1ljpudWxsLCIzdGFmZKIEIjpudWxsLCJuYW 1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW 1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpOAghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0"

Response
Schema application/json
Description Success
Status Code 200
Body {
"message": "Success",
"userID": 371,
"grouplIDs": [
"PATIENT"
1,
"orgID": "USTAN"
}

Check Reset Password

Description: Checks whether the provided username can be reset or not based on the

provided reset code

Endpoint /check_reset_password/
Method POST

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

reset_code *

string (Reset code) [1 .. 50] characters

Output Parameters

Type (Description)

message

string (A general message description)

102

organization

string (The organization name)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/check_reset_password/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\", \"reset_code\":
\"d15dd2d79b694cc4bc6b493815a41db2\"}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",
"organization": "USTAN",

"resource_name": "user",

}

Map User Info

Description: Maps the identity within the organization to the existing user information

Endpoint /map_user_info/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

identity *

string (Identity) [1 .. 200] characters

organization *

string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/map_user_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJ0b2tIbl90eXBlljoiYWNjZXNzli
WiZXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4N]NjZTQyNjUONmME4YW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MIiOiJTZXJ1bXNBd
XRoZW50aWNhdGIvbilsimlhdCI6MTY1MDUOODkONSwic3ViljoidGVzdF9
WYXRpZWS50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cEIEcyl6eWyJQQ
VRJRU5UII0OsIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQIOM51bGwsImRIcHRO
YW1lljpudWxsLCIzdGFmZKIEljpudWxsLCJuYW1lljpudWxsLCIhdWQiOiJo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl

103

n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"identity\": \"123456789\",
\"organization\": \"USTAN\"}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success",

"resource_name": "user",

}

Poll Graphical Status

Description: Polls to detect whether the graphical password creation status has finished or

not

Endpoint /poll_graphical_status/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

is_pending boolean (Returns True/False that is associated with the task status)
resource_bool Returns True/False that is associated with the resource_name
Example Call

Request

Schema application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/poll_graphical_status/" -H "accept: application/json"
-H "Content-Type: application/json" -d "{}"

Response

Schema application/json

Description Graphical status poll returned successfully
Status Code 200

Body {

"message": "Success",
"resource_name": "Graphical status",
"is_pending": false,

"resource_bool": true

Remove Second Factor

Description: Removes the second factor for authentication (e.g., paired mobile app) from

the user's account

104

Endpoint /remove_second_factor/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message string (A general message description)
Example Call

Request

Schema application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/remove_second_factor/" -H "accept: application/json"
-H "Content-Type: application/json" -d "{}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Success"

}

Request Account Verification

Description: Request a verification code for account activation via email

Endpoint /request_account_verification/
Method POST

Headers

accept application/json

Content-Type

application/json

Authorization

Token: <Expiring APl Token>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

organization *

string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_already_activated

boolean (True if resource is already activated, else False)

Example Call

Request

Schema

application/json

Curl command

curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_account_verification/" -H "accept:
application/json" -H "Authorization: Token
68b9d94424b118c6d3606320d20da2ac8721c297" -H "Content-Type:
application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"organization\": \"USTAN\"}"

Response

105

Schema application/json
Description User is already activated
Status Code 200

Body {

"message": "Account verification code email sent successfully",
"resource_name": "user",
"resource_already_activated": true

}

Request Reset Verification

Description: Requests a reset token for password reset via email

Endpoint /request_reset_verification/
Method GET

Headers

accept application/json

Content-Type

application/json

Authorization

Token: <Expiring APl Token>

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

username *

string <email> (Username) [1 .. 50] characters

organization *

string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

Example Call

Request

Schema

application/json

Curl command

curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/request_reset_verification/" -H "accept:
application/json" -H "Authorization: Token
68b9d94424b118c6d3606320d20da2ac8721c297" -H "Content-Type:
application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"organization\": \"USTAN\"}"

Response

Schema application/json
Description Success

Status Code 200

Body {

"message": "Account verification code email sent successfully”,

"resource_name": "password_reset_code"

}

Retrieve ID Info

Description: Retrieves the information about the identity of the user

Endpoint

/retrieve_id_info/

Method

GET

106

Headers

accept

application/json

Content-Type

application/json

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_obj_id

object (A dictionary that contains information about the identities of the
user in the form of key-value pairs. Each key corresponds to the
organization (string) and the associated value corresponds to the identity
(string) possessed within the organization.)

Example Call

Request

Schema

application/json

Curl command

curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_id_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJOb2tIbl90eXBlljoiYWNjZXNzliwi
ZXhwljoxNjuzMTQwOTQ1LCJqdGkiOil5MzE4ANjNjZTQyNjUONmME4AYWU4M
ZNmMYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MiOiJTZXJ1bXNBdXRoZW
50aWNhdGlvbilsImlhdCIEMTY1MDUOODkONSwic3ViljoidGVzdFOwYXRpZ
WS50QHNOLWFuUZHJId3MuYWMudWsiLCIJncm91cElEcyl6WyJQQVRIRU5UII
0sIm9yZO0IEljoiVVNUQUA4iLCIkZXBOSUQIOM51bGwsImRICHROYW 1lljpudW
xsLCJzdGFmZKIEljpudWxsLCJuYW1lljpudWxsLCIhdWQiOiJodHRwczovL3N
0Y3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvIn0.gXgQpOAghh
KOob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-Type:
application/json" -d "{}"

Response

Schema application/json

Description The values of identities are returned in resource_obj_id.
Status Code 200

Body {

"message": "Success",
"resource_name": "user",
"resource_obj_id": {

"USTAN": "123456789"
}

}

Retrieve User Info

Description: Retrieves the information about the user (i.e., Serums ID, date of birth, etc.)
from a specific organization (e.g., patient ID, staff ID, etc.).

Endpoint /retrieve_user_info/
Method GET

Headers

accept application/json

Content-Type

application/json

Input Parameters (* required)

Type <Format> (Field Model) [MinLength .. MaxLength]

107

identity *

string (Identity) [1 .. 50] characters

organization *

string (Organization) Enum ["ZMC", "USTAN", "FCRB"]

Authorization

Bearer: <JWT>

Output Parameters

Type (Description)

message

string (A general message description)

resource_name

string (The name of the resource)

resource_obj_info

object (A dictionary that contains information about user ID from a
specific organization (e.g., patient ID, staff ID etc) in the form of key-
value pairs. The key serums_id is an integer that corresponds to the
associated Serums user ID. The key dob is a date object (None if not
available) that corresponds to the date of birth of the associated user
ID.)

Example Call

Request

Schema

application/json

Curl command

curl -X GET "https://authentication.serums.cs.st-
andrews.ac.uk/ua/retrieve_user_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.ey)0b2tIbl90eXBlljoiYWNjZXNzli
wizXhwljoxNjUzMTQwOTQ1LCIqdGkiOil5MzE4NjNjZTQyNjUONmME4AYW
U4MzNmYjZmZmNiYzkyMSIsInVzZXJJRCI6MzcxLClpc3MiOiJTZXJ1bXNBd
XRoZW50aWNhdGlvbilsimIhdCI6MTY1MDUOODKONSwic3ViljoidGVzdF9
WYXRpZWS50QHNOLWFuZHJId3MuYWMudWsiLCIncm91cElEcyleWylQQ
VRJRU5UII0sIm9yZ0IEljoiVVNUQU4iLCIkZXBOSUQiOM51bGwsImRIcHRO
YW1lljpudWxsLCJzdGFmZKIEljpudWxsLCJuYW1lljpudWxsLCIhdWQiOilo
dHRwczovL3NoY3Muc2VydW1zLmNzLnNOLWFuZHJId3MuYWMudWsvl
n0.gXgQpO0AghhK0ob97WX69kjalZmCxCcOX-m_rLYfqrP0" -H "Content-
Type: application/json" -d "{ \"identity\": \"123456789\",
\"organization\": \"USTAN\"}"

Response

Schema application/json

Description The values of identities are returned in resource_obj_id.
Status Code 200

Body {

"message": "Success",

"resource_name": "user",

"resource_obj_info": {
"serums_id": "371",

"dOb": nn

108

APPENDIX D — Database Design (Entity-Relationship Diagram)

