Serums

Project no. 826278

SERUMS

Research & Innovation Action (RIA)
SECURING MEDICAL DATA IN SMART PATIENT-CENTRIC HEALTHCARE SYSTEMS

Report on Final Specification of Smart Patient Health Record

Format
D2.5

Due date of deliverable: 31st December 2020

Start date of project: January 15, 2019

Type: Deliverable
WP number: WP2

Responsible institution: Sopra-Steria Ltd.
Editor and editor’s address: Euan Blackledge, Sopra-Steria Ltd.

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Programme
Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services)
RE | Restricted to a group specified by the consortium (including the Commission Services)
CO | Confidential, only for members of the consortium (including the Commission Services)

& Ref. Ares(2020)7959336 - 27/12/2020

Change Log

Rev.

Date

Who

Site

What

31/12/20

E Blackledge

SOPRA

Version 001.000

Executive Summary

D7
Initial Requirements

Analysis
D2.A
Initial Smart Patient
Record Format
D41 Dz.2 D7.4
Initial Data Initial Storage, Access, Refined Requirements
Fabrication ete for Smart Records Analysis

L.

D1
Initial Smart Health
Center Software

¥
D2.3
Refined Smart Patient
Record Format

r
D7.3
Initial Use Cases and

Evaluation

Dé6.2
Refined Smart Health
Center Software

L2 .
D4.2 D2.4
Refined Data Refined Storage, Access,
Fabrication ete for Smart Records

¥ k.

D2.5 D7.5
Final Smart Patient Refined Use Cases and
Record Format Evaluation
]
12
D4.3 D2.6
Final Data Final Storage, Access,

Fabrication ete for Smart Records

h 4

DE.3
Final Smart Health
Center Software

D7.6
Final Use Cases and
Evaluation

Figure 1: Dependencies between D2.5 and other deliverables

Serums proposes a unified Smart Patient Health Record that is capable of both
securely storing data from any healthcare provider in a consistent manner, as well
as the secure transmission of this data to only approved healthcare providers. Un-
derlying this is the need for the patient to control who has access to their data,
whilst still complying with all relevant legislation.

The Serums solution enables a patient to apply their consent to their own
healthcare data using a range of role-base data sharing agreements via smart con-
tracts stored on an identity blockchain. Any interactions with the system is stored
for audit on the blockchain.

The system supports the future requirements for European wide healthcare by
enabling the citizens to control their own healthcare data.

Contents

Executive Summary o
List of Abbreviations

1 Introduction

2 Smart Patient Health Record Format

2.1 Overview of the Smart Patient Health Record Format
2.2 Giving Patients Control Over TheirData
2.2.1 How a Patient DesignsRules
2.2.2 How Tags are Designed
2.3 Data Vaults and How Serums Uses Them
23.1 DataVaultBasics

2.3.2 The construction of a Smart Patient Health Record

2.4 TrackingLineage
24.1 A (Very) High Level Overview of Blockchain
2.4.2 The Provenance and Lineage Blockchain

Bibliography

Appendices
A The Seven Principles of GDPR and how Serums Addresses them .
B The complete listoftags
C Problems Data Vaults Solve
D Data Vault Design - VaultBot

&~

List of Abbreviations

FCRB
GDPR

SPHR
TPOLE
USTAN
WP
ZMC

Deliverable

Fundacié Clinic per a la Recerca Biomedica
General Data Protection Regulation [1]
Month

Smart Patient Health Record

Time, Person, Object, Location, Event
University of St. Andrews

Work Package

Zuyderland Medisch Centrum

Chapter 1

Introduction

Deliverable 2.5 is the final specification of the Smart Patient Health Record
that represents a central core for the information about a particular patient in the
smart health centre system, including both static personal data such as age, height,
weight, date of birth etc. that is unlikely to change, and dynamic personal data such
as the treatments the patient is undertaking, screenings, and prescribed medica-
tions'. The main challenge for the Serums project is to deal with decentralisation
of the information related to a particular patient. In modern healthcare systems,
the data about a single patient may reside on different subsystems in the same
healthcare centre, or even, in some scenarios, scattered across different healthcare
institutions. It will also be collected from a variety of devices, some of which
(e.g. personal monitoring devices) will need to communicate with the healthcare
systems over open networks. We need to be able to represent all this data in a stan-
dardised way, taking into account the possible geographical distribution of both
where the data is stored and where is it collected from.

It is essential to derive a standard, precise, and machine readable format of the
data related to a single patient. This also includes all the metadata associated with
the data (e.g. whether the data is local or remote, how it is accessed etc). The SPHR
also needs to provide the possibility of different types of access rights for differ-
ent entities, such as patients, general practitioners, specialists, etc. who will be
accessing the data. Furthermore, the SPHR obeys the fundamental data protection
governance set out by international, national, and institutional guidelines.

Ideally, we want to derive a format that will cover all of the use cases used in
the Serums project. This would allow generic distributed data analytics mecha-
nism (an objective of WP3) to be performed on the medical data. Additionally, it
would allow successful data fabrication (an objective of WP4), giving us access to
a vast amount of realistic data that will have the same format as the real data (in

"While we talk about static and dynamic data being contained within the SPHR, it is worth clari-
fying that all of the data that goes into a SPHR is selected in real-time from the source systems. As
such, a SPHR itself could be thought of as being made up entirely of dynamic data since any changes
that are made by the healthcare provider to a patient’s data are immediately reflected the next time a
SPHR is requested.

terms of the fields used, ranges and distribution of values in the fields and correla-
tion between different fields), but will be synthetic, without the possibility of being
associated with any real data, and therefore not being subject of privacy and own-
ership concerns. This data will be used throughout the project both for developing
new technologies and for stress-testing them on large volumes of data. Finally, the
precise format of the data is essential for storage and access mechanisms.

This deliverable represents the final step in deriving a uniform Smart Pa-
tient Health Record format. We are now presenting a solution that is capable
of supporting distributed data across multiple healthcare providers and capturing
the metadata associated with the collection, transformation, transmission, and de-
struction of the data during the life cycle of a SPHR.

Chapter 2

Smart Patient Health Record
Format

2.1 Overview of the Smart Patient Health Record Format

The Smart Patient Health Record format that Serums proposes is just that:
smart. Rather than a one-size-fits-all approach to data management, we provide
a format that can continuously adjust to the needs of the patient and/or healthcare
providers.

This is achieved by allowing the generation of unique SPHRs that contain only
the relevant data for a given circumstance. What this looks like in a practical sense
is that the SPHR that is generated for a patient’s physiotherapist is likely to be
very different to the SPHR that is generated for the same patient’s dermatologist.
Essentially, these two healthcare specialisations require different subsets of the
available data to provide their care effectively and Serums has enabled an easy
way to design and deliver these in a secure, transparent way.

The way this is achieved is twofold: the application of rules to a patient’s data
(Section 2.2) and the way we structure the resulting data set (Section 2.3). In very
broad strokes, the rules act as filters for the data and the structuring technique
allows for multiple data sets to be joined together, often from varying sources.

The final element that goes into making up the SPHR is the method by which
we track the lineage and provenance of the data that it contains (Section 2.4). This
metadata is stored on a blockchain external to the record itself, allowing for an
immutable record of all of the processing that each element of a particular SPHR
has undergone.

2.2 Giving Patients Control Over Their Data

We have been tasked with designing a health record format that not only respects
the privacy desires of patients but also complies with international, national, and

institutional legislation for data protection. To discuss how our solution accom-
plishes these requirements we will look at how we ensure regulatory compliance
as well as discuss how our solution provides patients with the tools to control vari-
able privacy levels for their medical data. However, before we look at the specifics
of the Serums solution, it is worth quickly covering what the end results of these
goals looks like. In particular, how the patient interacts with the tools that we
provide.

2.2.1 How a Patient Designs Rules

The internal language within Serums around how a patient controls the privacy
levels of their data is to say that they design rules for their data. This is essentially
who can see what and for how long. In order to achieve this, we have designed a
user-friendly method for allowing patients the ability to select subsets of their data
and to either grant or deny access for it to a particular health professional or group
of health professionals'.

Early in development it was envisioned that this control could be given to the
patient in such a way that would allow atomic granularity over the data that they
would be able to select for sharing. For example, a patient could make a rule that
allowed one doctor access to a single field of a single table of their data for 5
minutes.

Whilst this would be possible, it was decided that this would be of little use to
either the patients or the healthcare providers. As such, a new approach was chosen
that breaks down the health data into sensible subsets’ from which the patients
can pick and mix when designing their rules. These subsets are known internally
as tags. An example of how a patient interacts with these tags can be found in
Figure 2.1. This depicts the rule creation screen of the Serums Smart Health
Centre System (https://shcs.serums.cs.st-andrews.ac. uk/?).

2.2.2 How Tags are Designed

Our solution views the different regulatory requirements as a hierarchical frame-
work that is applied to each SPHR. Since each layer of framework must work with
and in no way contradict the underlying layers, we have aimed to keep this process
as simple as possible with scalability and maintainability in mind.

To help visualize our approach, Figures 2.2, 2.3, and 2.4 should be referenced
throughout this section. The foundation of the framework is GDPR. Since this

"While the current Serums Smart Health Centre System frontend has not implemented group
control settings at the time of writing, the backend systems for controlling them have already been
designed and implemented.

’The sensible subsets that have been chosen for Serums are very broad. If the technology were
to be developed for use by healthcare providers, we would need to alter these subsets to be far more
granular. For instance, a patient might want to only share details of a single treatment which they
have received whereas the current subsets would return all of the treatments they have ever received.

3Link correct and working at time of writing.

https://shcs.serums.cs.st-andrews.ac.uk/

Adding new rule

Select Medica
Action professional:

Akewing ‘Emily Scott’ -

lam the selected
professional:

To access my medical records on the selected tag(s) :

o

elect Tag(s)

[J Diagnostic

Patient details

[Appointments

Treatments

Figure 2.1: The rule creation screen on the Serums website showing that available
tags for the USTAN use case

law covers the rights of every EU citizen’s personal data, it is vital that whatever
we build must comply with this. Appendix A covers how WP2 addresses each
of the seven principles of GDPR. In each of the Figures referenced above, GDPR
makes up the largest outer box of the framework and is what everything else must
fit within.

The next two layers of the framework cover both the regional laws regarding
health data and each hospital’s own guidelines for their patients’ data. It is from
these framework layers that the data content for each of the tags is derived.

We have designated the names for a set of 15 tags*. Working with the use case
partners, we have created subsets of their data and categorised these subsets under
the available tag names.

An example of the output of this process can be seen in Listing 1. Here we can
see the various aspects that make up a tag. They are:

* tag: This is the fag under which the following data will be classified

* table: This is the name of the table within the source system that the data can
be found

e fields: This is a list of one or more fields within the table that are to be
classified under the rag

* key_lookup: This allows for instances where the source table does not con-
tain the patient’s id. Since this is the field we use to filter all data by, we must
use a secondary table that contains both the patient’s id and the primary key
for the table we are currently trying to select. This is very much an edge case
in the data sets we have been provided, however, with one such case existing
in our data sets we have been sure to allow for this type of behavior.

There are three important things to note about the design process:

1. Each field of the available data has been captured under one or more of the
tags

2. Multiple sources can be combined under a single fag

3. Not all tags have been used by all of the use case partners

If we use the Listing 1 as example of the diagnostic tag for FCRB, we can
see that it falls under the categories points 1 and 2 from the above list. This is
because this tag captures all of the fields from their source table "diagnostic" as
well as combining the relevant fields from a second source table "episode”". FCRB,
however, does not have any data related to allergies in their current data set. As
such, they have not modelled the allergies tag which addresses point 3.

*The complete list can be along with their descriptions can be found in Appendix B.

10

By using this common language to define the fags it enables the same tag name
to be used by each of the use case partners to uniquely describe their data. There-
for, a patient can use the same tag across multiple different hospitals and know
roughly what the underlying data is likely to contain. It also ensures that the hos-
pitals themselves are in control over exactly what this data is. This prevents the
system from being able to share data in a way that has not been authorised by the
hospitals”. Should internal guidelines or data protection laws change, the hospitals
would be able to adjust their tag definitions to capture these changes without the
patient experiencing any change in how they interacted with the system.

A difference of how the same tag can be used in different ways can be found by
comparing the Listings 1 and 2. As can be seen, both describe the diagnostic tag,
however, they are made up of different tables and fields. This is due to the way that
each of the use case partners stores their data. The results of these definitions are
very similar data sets, however, a patient does not require prerequisite knowledge
of how the data is held by each medical centre to make an informed decision when
selecting data to share.

2.3 Data Vaults and How Serums Uses Them

As has been shown in Section 2.2.2, the hospitals themselves hold medical data in
different ways. This is due in large part to the choice of database they use to store
and organise their data in. Since there is no guarantee of consistency across these
databases, it was important that we choose a common format for the SPHR. For
this, we have chosen to use a methodology for building databases called data
vault.

A data vault allows for new sources of data to be added without the need for
complex redesigns of the existing data structures [4]. This is of massive benefit
for Serums, and specifically the SPHR, as it allows more healthcare systems to be
added, as well as the development of new use cases. An example of this benefit can
be found in Appendix C. Our Smart Patient Health Record format can be seen
as the application of access rules to the construction of a data vault.

2.3.1 Data Vault Basics

A data vault structure relies on three base type of tables: the Hubs, the Links, and
the Satellites. The Hubs contain the business keys, the Links join the Hubs, and

3An issue that is beyond the scope for Serums but which is worth noting is that sometimes
healthcare workers misuse or misunderstand the intention for fields within databases. This can lead
to sensitive information being held in locations that were never intended to hold such information.
It may even be the case that everyone within a healthcare centre knows that this is where that infor-
mation is stored, however, unless this is communicated to the person(s) designing the tags, then it is
likely that this data would be shared without the express knowledge of the patients. Clear communi-
cation would be vital between the healthcare workers and the system admins to ensure that misused
fields like this are known and classified appropriately by their actual purpose.

11

Listing 1: An example of the information FRCB’s diagnostic tag represents

"tag": "diagnostic",
"table": "fcrb.diagnostic",
"fields": [

"einri", "patnr", "falnr", "pernr",
"lfdnr", "dkeyl"

]I

"key_lookup": {}

"tag": "diagnostic",
"table": "fcrb.episode",
"fields": [

"einri", "falnr", "patnr", "pernr", "bekat",
"falar", "statu", "krzan", "storn", "casetx",
"enddtx", "einzg", "fatnx"

I
"key_lookup": {}

Listing 2: An example of the information ZMC’s diagnostic tag represents for
comparison

[

"tag": "diagnostic",
"table": "zmc.patient_diagnostic",
"fields": [

"patnr", "type", "name", "anatomical location",
"laterality", "begin_date", "end date"

1,
"key_lookup": {}

"tag": "diagnostic",
"table": "zmc.patient_documents",
"fields": [

"patnr", "report_title", "department",
"date", "content"

1,
"key_lookup": {}

12

[
|
| —
|
| E—

Figure 2.2: Depiction of the legal framework (left) and the two access rules

International Laws (GDPR, etc.)
Local Laws (UK-GDPR, etc.)
Hospital Guidelines

Details of hip operation

Details of medication

patient is going create (right)

|
I
—
|
—

International Laws (GDPR, etc.)
Local Laws (UK-GDPR, etc.)

Hospital Guidelines
Details of hip operation

Details of medication

Figure 2.3: Depiction of a patient’s access rules fitting within a legal framework

13

N

mmm International Laws (GDPR, etc.)
= | ocal Laws (UK-GDPR, etc.)
T Hospital Guidelines

= Details of hip operation
=1 Details of medication

Figure 2.4: Depiction of the differing interpretations of the same access rules as
generated within different legal frameworks

the Satellites contain the descriptive data. These three table types can be seen in
Figure 2.5.

14

Satellite

Satellite

Hub Link Hub

Satellite Link
Link

Satellite Hub

Figure 2.5: Depiction of the relationships between Hubs, Links, and Satellites

Our Hubs have been chosen as Time, Person, Object, Location, and Event.
With these five categories, we are able to classify any incoming data (currently a
manual process is required to determine which categories each piece of incoming
data falls under, however, we are hopeful that some of this process can be auto-
mated by the delivery of D2.6 in month 34). Once the incoming data has been
mapped to the data vault format we are able to automatically generate the SPHR
on request, applying rules to the selection of data in the process (Section 2.2.1).

2.3.2 The construction of a Smart Patient Health Record

The following Figures demonstrate how the incoming data from one of our use
case partners undergoes transformation from the source structure into the data vault
form. It is worth mentioning here that we could select data from multiple sources
which were never intended to be joined together. We would simply be storing

15

character varying Oeinii character varying (-~ orgid character varying e Oeinii character varying integer «pk >,
(= patar integer <ok = falor character varying < pk) O orgna _character varying i~ pator integer «pk character varying <k
fr character varying <« pk > Ofabr character varying [medicat specaty_pkey _constraist < pk»| - falrr character varying <« pk» character varying <ok
Fdnr integer (- patar integer «pk») t = 1 (-~ pernr character varying <« ok » character varying ok
O dkeyl character varying Obeket ~character varying Omotx character varying character varying
G~ pernr _character varying < pk> Oeinzg character varying O mostx character varying timestamp
Q dagnostic_pkey _constramt__« pkc> Ostatu character varying O motypd character varying O wertogr character varying
S Okman character varying L_signs &~ mpresnr character varying <« pk » O wertugr character varying
e — Oendit timestamp (= patnr integer «pk >, Oerdat timestamp O wertmax character varying
Oerdat timestamp G falor character varying «pk » Ostom character varying O wertmin_character varying
(= pernr character varying < pk ») G idvs ~ charactervarying <« pk» -~ stusr character varying < pk» & monitorng_parameters_pkey constraint < pk »
Ostom character varying Ovppid character varying Ostdat timestamp %
Obegit timestamp Odttyn character varying Ostod _character varying
O casetx character varying Oerdat timestamp © medication_pkey constraint __ « pk »|
Ofatnx character varying Ovptim time L ECKELon ey ConStamt < pex)
O enddix_character varying O bmexs haracter varying e
PN Ovwert character varying
@ epiode phey constraint _« pk+| Ovhem _character varying
Q vita,_signs_pkey constraint « pk »|
order_entry professional serums_ids
Oeini character varying integer (= patnr integer « k) (~ pernr character varying wpk» (= serums_id integer <k |
= falr character varying «ph > Ogschl character varying Cpste character varying O erusr character varying = patnr___integer <k,
= idodr character varying wpk» Onname character varying stres character varying Oorgd character varying & serums s pey constrant < pks)
= patnr integer «pk» Ovname character varying bnd character varying O ghdat timestamp rs
= pernr character varying « pk »| Ogbdat timestamp ort character varying © begdt timestamp e
Oerdat timestamp O gbrem character varying Gfoor character varying © enddt timestamp
= orgid _character varying wpks Omam character varying Gadmr__character varying O erdat timestamp
@ order_entry pkey_constraint <ok Ogland character varying & patient_address pkey constraimt « pks. O rank _character varying

Ofamst character varying
Otelfl character varying
Orvnum character varying
O decdat _timestamp
< patient_pkey constraint __« pk »

a Q professional pkey constraint __« pk ».

Figure 2.6: The source tables for the FCRB use case

more business keys in the Hubs and attaching additional Satellites. The rest of the
process appears identical.

Starting with the source data for FCRB (Figure 2.6) we can see how the data is
structured when we make a request to access it. As was covered in Section 2.2.2,
the actual data that is selected from the source tables is controlled by a set of tags
which are designed by the hospitals and selected by the patients. For the following
examples we will be using all of the data from these source tables.

In Figure 2.7 we see the start of every one of our data vaults. Here we have gen-
erated all of the Hub and Link tables and implemented the relationships between
them. Internally, this structure is called the data vault boilerplate.

Figure 2.8 shows the next step of data vault generation. Here the business keys
have been added to each of the corresponding Hubs.

The final step of data vault creation is the addition of the Satellites. These
are simply attached to their corresponding Hubs. Figure 2.9 shows the complete
data vault structure for FCRB’s use case. Should a patient wish to share all of the
data from FCRB’s use case, this is what their SPHR would look like at the time of
delivery.

2.4 Tracking Lineage
Since we will be selecting, filtering, transforming, and combining data from mul-

tiple sources during the creation of an SPHR, it is important that we record exactly
which processing has taken place to a given piece of data and when. We could

16

hub_time

= id integer « pk»

/|
time_person_link

hub_object

gpelson_obt link @ tnid ink o

hub_person

(= id integer «pk»

person_event_link object_location_link

P
person_location_link

AN
object_event_link

hub_location hub_event

e locati t_link
i id_integer «pk» _ N = id integer «pk»

Figure 2.7: The boilerplate structure for our TPOLE data vault

17

= id integer
@ person g integer.
time il _integer

& person_tme._ink_pkey. ‘constraint
& person_time_ ink_person_id_fiey constraint

6«

constraint
joct_bnk_object i fkey _constraint < i)

seoieey
]
i
<

A
time_location_link

!
§

= id integer «pk>|
% tme i integer Ao,
% event d_integer <o,
event_ink_pkey C enks)

' tme_evenC_ink_cme_io_fkey constraint < fc»|
ik event. int o

o integer <pk)
person i integer Ao

wph
& person_event_ink_person_id_fiey constraint < i »

o integer
% location_idinteger
@ event.d__integer

cation_event_ink_pkey ‘constraint
@ locatio_event_iink location_id_fkey constraint
2 locatin_event_in

vent_id_fkey _constraint

«pl>)

& object_event_ink pley constraint <ok
& object_event ink object.if_fkey constraint <>
& object_event.ink ovent_io_fkey _constraint _« f»|

nid integer <pk>

O patnr integer
Opem_character varying.

& hub_event phey constraint _« pic»|

Figure 2.8: The Hubs filled with FCRB’s business keys

18

Figure 2.9: The complete data vault structure for FCRB’s data

19

store this metadata within the records themselves, adding it to the Hubs of the data
vault structure. This would allow each Satellite to have a clear record of where the
data it contains has come from and what has happened to it along the journey.

The issue with this approach, however, is that the SPHRs themselves have a
finite life. Since they are created in real-time at the time of request and are deleted
from the Serums backend system shortly after transmission, it is highly unlikely
that the metadata for a particular SPHR would be available for audit at a later date.
As such, we have chosen to use a blockchain to store this information.

24.1 A (Very) High Level Overview of Blockchain

As a little bit of background, a blockchain is a special type of database that dis-
tributes copies of itself across a network of nodes. With each node holding a
copy of the data, responsibility for the accuracy of the data the blockchain holds is
shared. As such, there is no one single owner of the data or indeed one single point
of failure®.

2.4.2 The Provenance and Lineage Blockchain

As detailed in Section 2.3.2, data is processed in multiple different ways before it
is transmitted as an SPHR. Since we want to record what these processes are and
their results in a way that can be audited, our blockchain has been designed in such
a way that each SPHR has a single entry on the blockchain that is updated as each
process reaches its conclusion.

An important thing to note is that no medical data will be stored on the blockchain
itself. As such, care has been taken in deciding what should be stored that would
allow a clear understanding of the construction of the SPHR without revealing any-
thing about the contents of the record itself.

The way that the process works is as follows:

1. When a request for a SPHR is made, the blockchain is notified and a new
record is started

2. The blockchain will return an ID for the newly created record. It is this
ID that acts as a fingerprint for the SPHR and will be used throughout the
process to update the same record. This ID will be stored in the Hubs of the
SPHR

3. Every time a process is undertaken, the action and the results are added to
the record on the blockchain. Examples of what is stored include:

* The rule (Section 2.2.1) that is being applied to the patient’s data

SWhile an in depth look at the inner workings of a blockchain is beyond the scope of
this report, an excellent graphical explanation of this entire process can be found at http:
//thesecretlivesofdata.com/raft/.

20

http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/

* The time a process was initiated and completed
* The source system that a piece of data was selected from
* The type of transformations that occurred

* A hash of the data vault schema that was generated. Since the same
schema should be generated every time that a particular rule is applied
to a particular patient’s data, the hashes can be replicated without the
need to access the data

* The location(s) of any copies of data that has been made during the
processing

4. Once the SPHR has been transmitted, a cleanup process is triggered that
deletes anything that has been generated in the process of making it. The
confirmation of this deletion is the final entry that will be recorded to the
blockchain

With this, we have an immutable record of everything that took place during
the creation of the SPHR. The blockchain is able to be searched by system admins
for all of the records of a particular user. This information can then be used to
check that the correct data was selected from the correct sources, the rules were
applied appropriately, and that the resulting data has been properly disposed of.

21

3. Conclusion

The current Smart Patient Health Record is version 001.003 and is the final for-
mat for the Serums project.

It is capable of transporting all of the data for each of the use cases. Further-
more, it is capable of adapting to the privacy desires of users of the system whilst
ensuring that it remains compliant with all data governance laws and guidelines.
We have also ensured that we maintain a permanent record of the provenance and
lineage for the data each record contains, without exposing any of the sensitive data
within it.

22

Bibliography

[1] Information Commissioner’s Office. Guide to the General Data Protection
Regulation (GDPR). Technical report, Information Commissioners Office,
2018.

[2] V Janjic, J K F Bowles, A F Vermeulen, A Silvina, and E Blackledge. The
SERUMS tool-chain : Ensuring Security and Privacy of Medical Data in Smart
Patient-Centric Healthcare Systems. In 2019 IEEE International Conference
on Big Data (Big Data), pages 2726-2735. IEEE, 2019.

[3] Dan Linstedt and Michael Olschimke. Building a Scalable Data Warehouse
with Data Vault 2.0. 2015.

[4] Daniel Linstedt and Michael Olschimke. Introduction to Data Warehousing.
In Data Vault 2.0. 2016.

23

Appendices

24

Appendix A

The Seven Principles of GDPR
and how Serums Addresses them

Lawfulness, Fairness, and Transparency

We achieve this through the use of rules (Section 2.2.1). By working with GDPR
by design and ensuring that the data is compliant with any needs of each use case
partner, we guarantee that the data meets legal requirements. Furthermore, by
giving control to the patients over who can see what, we ensure they are aware of
what the data will be used for. Finally, by tracking exactly how a SPHR is created,
we allow a fully transparent record for each instance of the SPHR without revealing
any of the sensitive information held within.

Purpose Limitation

Since each SPHR is generated for a specific purpose, we allow the users to set
exactly what this purpose is. They may generate multiple different SPHRs for
multiple different purposes.

Data Minimisation

The data that makes up the SPHR is filtered at the point of selection based on the
rules. This way, only relevant data can possibly be included in the final SPHR.

Accuracy

A SPHR is generated in real-time at the time of request. The source for the data is
the use case partner’s own data store. As such, the SPHR is as accurate as the data
in the hospital’s own system. If there is an issue with the data, the patient would

25

inform their hospital and as soon as the data is updated there, any new request for
a SPHR would reflect the change in data.

Storage Limitation

Currently each SPHR is very short lived. It is created at time of request and any
remnants of it are cleared up after transmission. The record of its life is stored on
a purpose built blockchain that records everything that took place in the creation
and deletion of the record, without retaining any identifiable data beyond their user
id. This user id allows audits to be carried out on SPHRs that have been generated
with their data.

Integrity and Confidentiality (Security)

We have worked hard across multiple work packages to reduce the risk of unau-
thorised access to a patient’s data. Specific to the SPHR, before transmission, it
is encrypted with a one time set of keys. This means that even upon a successful
interception of multiple SPHRs, a bad actor would have to break the encryption for
each one separately and the result would typically be a small subset of data. This
greatly minimises the risk to each patient.

Accountability

We have worked hard to develop tools that allow us to work in as transparent way
as possible. This enables almost every aspect of the project to be audited in a way
that respects the privacy of users.

26

Appendix B

The complete list of tags

The following is the current list of tags which have been prescribed to the use case
partners of Serums. These were designed to cover all of the data for all of the use
cases, with every field of every source table falling into at least one of them. With
this list being a relatively new aspect of the project, there is a chance that it will be
altered in some way before the final submission (D2.6 - M34).

Personal

A very limited subset of data that usually only contains the patient’s name, sex, and
key measurements

Patient Address

Limited to only the patient’s address

Patient Details
An expanded set of data to that of the personal tag that also contains the details

found in patient address. Additional fields might also contain things such as tele-
phone number, marital status, nationality, etc.

Patient Appointments

Any data related to appointments such as the date, the reason for the appointment,
and the name or id of the healthcare professional

27

Wearable

Any data which is generated by a wearable medical device. Both ZMC and FCRB
have examples of this technology in their use cases

Diagnostic
Any data related to a patient’s diagnosis. This covers a range of sources for all

three use case partners that includes medical reports, specific data related to the
location of the condition, the dates related to the condition’s start and end, etc.

Medication

Any data related to medication the patient has been prescribed as part of their
treatment

Operations

Any data related to an operation the patient has undertaken such as the date, the
reason, and the outcome

Documents

Any documents connected to a patient such as doctors’ notes or referrals

Treatments

Any data related to the treatments the patient is under going. This can include
elements found in the medication, operations, and documents tags

Healthcare Providers

Details of the healthcare providers. This includes elements such as name or id,
department, and speciality

Drugs and Alcohol

Any data related to substance usage

28

Allergies

Any data related to allergies

Additional Information

Currently used as a catch all to cover edge cases which do not yet fit into another
tag. Currently the data which is covered under this tag includes additional details
about living conditions and notes about hearing difficulty

All

Mostly used as a debug tool as it returns all of the data for a patient

29

Appendix C

Problems Data Vaults Solve

One of the key issues we are aiming to solve with the Smart Patient Health Record
is the combination of sets of data into a single source that can be easily and securely
transmitted. For healthcare providers who share the same systems, such as those
who use SAP, this would be a relatively painless exercise. However, even within
our small set of use case partners, there are key differences between the systems
which we are looking to model. The following set of figures is an illustrative
example of the benefits of using data vault as the backbone for our SPHR.

For our example, we start with three tables as depicted in Figure C.1. These
tables are from a fictitious hospital and are for the patients, the doctors, and the
treatments of the patients.

(= patient_id bigint « Pl » = doctor_id bigint « pk »
name varchar(255) name varchar(255)
address varchar(255) specialism varchar(255)

= hospital_id bigint « pk » = hospital_id bigint « pk »

Q patients_pk constramt « pk » Q doctors pk constramt « pk »

[) =ireatments)

= treatment_id bigint « pk »
treatment_name wvarchar255)
O treatments pk constraint « pk »

Figure C.1: Three tables which we intend to have relationships between

Our example hospital links these tables using the many-to-many relationship
model. Specifically a patient can see many different doctors and the doctors can see
many different patients. Additionally a doctor may prescribe different treatments to
each of their different patients and a patient may receive many different treatments

30

as prescribed by their many different doctors. Figure C.2 demonstrates the join
tables that can be used to facilitate this type of relationship.

= patient_id bigint « pk » = doctor id bigint « pk »
) name varchar(255) patients_doctors_link .) name varchar(255)
) address varchar(255) = p— O) specialism varchar(255)
= hospital_id bigint « pk » T = hospital_id bigint « pk »
Q patients_pk constraint « pk » Q doctors_pk constraint « pk »

treatments

= treatment_id bigint « Pk
O treatment_name warchan255)
QO treatments pk constraint « pk »|

¢ AL

Figure C.2: The addition of join tables between our three start tables

As our example hospital continues to expand its IT capabilities it adds in the
appointments booking system. There is a desire for the appointments system to
maintain many-to-many relationships with all the existing tables to ensure flexibil-
ity in how the system can be used. This single new data source results in the need
for three new join tables to be created and maintained as can be seen in Figure C.3
and is a demonstration of how rapidly scaling issues can be created.

(= patient_id bigint « pk » = doctor_id bigint « pk »
© name varchar(255) patients_treatments_link © name varchar(255)
© address varchar(255) O S— = © specialism varchar(255)

= hospital id bigint « gk »
Q doctors_pk constraint « pk »

(= hospital id bigint « pk »
Q patients_pk constraint « pk »

Fy

appointments treatments

(= appointment_id bigint « pl = = treatment_id bigint & pk »
O appointment_date date oL treatments_appointments_link SN O treatment_name varchar(255)

& appoittments_pk constraint « pk » 0 < treatments_pk constraint « pk »

¢ A Y

Figure C.3: A fourth table and its relationships added to the existing schema

The example here is extreme, however it provides insight into one of the core
issues that we would encounter if we were to use standard database modelling
techniques. What follows is the same example data set but this time it is modelled
using our data vault technique.

31

An important step that is not covered here is the mapping of incoming data
to its new structure. For each field of each source table we currently must know
where it is going to end up. In other words, which Satellite it is going to form
part of. This is covered in more depth in Appendix D. Simply put, we categorise
each field of each incoming table under one of the Hub categories. Fields which
are similar enough in scope are grouped together in Satellites. This does allow for
single source tables to be split across multiple Hubs and in turn multiple Satellites.

As covered in Section 2.3.2 we always start with a boilerplate structure for
our data vault, with five Hubs (Time, Person, Object, Location, and Event) with
many-to-many relationships formed between each of them in the form of Links.
Figure C.4 shows a simplified version of this, reducing the numbers of Links be-
tween the Hubs for readability. A complete version of this boilerplate structure can
be found in Figure 2.7.

(mid serial _«pk»

Figure C.4: A simplified data vault boilerplate

With the boilerplate ready, we can extract the business keys from the incoming
data and insert them into the appropriate Hub(s) based on the destination Satel-
lite(s) for each source table. Figure C.5 shows the results of this process as applied
to our original three tables: patients, doctors, and treatments.

Note here that both the patient and doctor Satellites are attached to the Person
Hub and that the treatments Satellite is attached to the Object Hub. The many to
many relationships are still maintained in all of these circumstances.

sat_person_patient_details

serial «pK» sat_person_doctor_details
(ERENFED) id serial «nn»

varchar(255)

varchar(255)
integer « fk »

varchar(255)
id_hub_person integer «fic »

hub_person @

hub_object serial «pk »
atient_id bigint
ospital_id bigint
© doctor_id _biginr

AN
person_event_link

LY

t integer

Gsid serial «pk»
o av

Figure C.5: Our original three tables attached to the data vault boilerplate

For the final step of this example we will add in the appointments table. This
time it is worth noting that rather than requiring multiple changes to the overall
schema of the database, we simply insert the business key (appointment id) into
the Time Hub and attach the rest of the appointments table’s data as a Satellite to
the Time Hub. This can be seen in Figure C.6.

name varchar(255) id serial «nn»
varchar(255) © name varchar(255)
on integer « fk» o

) specialism varchar(255)

ub_person integer ks

hub_person O—
e id serial «pk»
© patient id bigint
hospital_id bigint
©doctor_id _bigint

3 2 v

hub_object
= il serial «pk»
© treatment_id_ bigint

person_object_link

serial «pk »
© appointment_id bigint

AN\
person_event_link
o AV]
AN
sat_object_treatment_details.

Pk»
eatment_name varchar(255)
integer __«fk»

sat_time_appointment_date

integer «fk »

taid serial «pk»
o AV

Figure C.6: The fourth table now in place on the data vault

By maintaining a consistent core structure to the data vault, we are able to
rapidly implement changes to the incoming data as well as easily join together
disparate data sets that were never intended to be joined in the first place.

33

Appendix D

Data Vault Design - Vault Bot

WP2’s Smart Patient Health Records are generated in real time as a result of rules
(Section 2.2.1) being applied to the source data which is then transformed in a
data vault (Section 2.3.2). For this to run smoothly, we currently have to man-
ually set the mapping of every source field to their destination Hub or Satellite
(Appendix C).

While the use cases for the Serums have largely stayed the same since the
initial proposal, the data which the use case partners have wanted to include has
changed repeatedly. With each data change comes the need to manually edit or
create both the new code to reflect these changes in the data vault structure and the
control files which are used to map the fields from the source to their destination.
This was a time consuming effort that was rife with room for error when working
with some of the larger data sets.

To improve this situation, SOPRA has developed tooling known as Vault Bot
to increase both the speed and accuracy of any changes to the source data that are
requested. This chapter will cover some of the functionality that it offers. It is still
a very early build, however, it has already improved the speed of development and
further updates to the tool will continue to be added.

The first major improvement is that there is a graphical interface which links
directly to the source database. This can be seen in Figures D.1, D.2, and D.3 (for
the purposes of this chapter we are continuing to use the example hospital as used
in Appendix C). The advantage this gives is that the source table, the field names,
and the field types are captured automatically so there is no room for human error.

A further example of improvement can be found on the table design screen
as shown in Figures D.2 and D.3. Whilst not required for our example here, it is
entirely possible to design multiple Satellites at the same time from the same table,
such as when subsets of the table are categorised under different Hub types or
broken down to be more atomic. This ensures that all the correct business keys are
correct across the Hubs as well as guaranteeing that the Link tables are correctly
utilized during the transfer of data from source to the data vault.

The final improvement is the auto-generation of the data vault schema and the

34

b VaultBot x o+ -
@ @ localhost3001 #r o= 0 em»0 :

Select Table

Table Names
public.appointments
public.doctors
public.patients

publictreatments

Figure D.1: The table select screen for our fictitious hospital from Appendix C

control files which maps the source data onto its destination Hub or Satellite. The
new schema is written as a series of SQLAlchemy classes and delivered as a file
which can be ran in Python3 to both create the data vault and, if necessary, be used
as a declarative class file for forming an Object-Relational Mapping (ORM). This
allows interaction between the database and the outside world without the need
for SQL, removing an otherwise potential avenue for misuse. Examples for the
code for the Hubs, Links, and Satellites can be found in the Listings 3, 4, and 5
respectively.

The relevant control files are read by the API at the point at which the data
is being copied from the source tables into the newly generated data vault. An
example of the control file that is generated for the patients table can be found in
the Listing 6.

35

& VaultBot x +

C @ localhost:3001 4

Select Columns

- x

mo0oBE6E»Q:

Table: public.patients

Column Names Selected Primary Key

Satellite

address ‘

hospital_id ‘

name ‘

patient_id ‘

Select Table | [Add satellite || wake Up vault 8ot |

Figure D.2: The data vault design screen for the patients table

& VaultBot x o+

C @ localhost:3001 R:4

Select Columns

= x

wOoOBREeEBD*»0 :

Table: public.patients

Satellite

Column Names Selected Primary Key
address Yes ‘sa(,person,pauent,dexails
hospital id Yes ‘
name Yes [sat_person_patient_details

patient_id Yes ‘

Select Table | [Add satellite || wake Up Vault 8ot |

Figure D.3: The completed data vault design screen for the patients table

36

Listing 3: An example of the auto-generated code for a Hub

hub_person={"'__tablename__': 'hub_person',
' __table_args__ ':{'schema':'public'},
'id': Column (column_types|['integer'], primary_key=True) }

primary_keys = []
for keys, values in {

'doctor_id': {'data_type': 'bigint'},

'hospital_id': {'data_type': 'bigint'},

'patient_id': {'data_type': 'bigint'}
}.items () :

primary_keys.append (
{keys: Column (column_types|[values|['data_type'll)}
)
for key in primary_keys:
hub_person.update (key)

person = type ('PUBLIC_Hub_Person', (Base,),hub_person)

Listing 4: An example of the auto-generated code for a Link

person_object_link={'__tablename__': 'person_object_link',

' __table_args__ ':{'schema': 'public'},

'id': Column (column_types|['integer'], primary_key=True),

'person_id': Column (column_types|['integer'], ForeignKey (hub_person.id)),
'object_id': Column (column_types|['integer'], ForeignKey (hub_object.id))}

person_object = type ('PUBLIC_Person_Object_Link', (Base,),person_object_link)

37

Listing 5: Two examples of the auto-generated code for the Satellites

person_doctor_details = type(
'"PUBLIC_Sat_Person_Doctor_Details', (Base,), new_satellite

new_satellite={'__tablename__ ':'sat_person_patient_details',
' _table_args__ ':{'schema': 'public'},
'id': Column (column_types|['integer'], primary_key=True),
'source_table': Column (column_types|['string']),
'hub_id': Column (column_types['integer'], ForeignKey (hub_person.id)) }
columns = []
for keys, values in {
'name': {'data_type': 'varchar (255)'},
'address': {'data_type': 'varchar (255)"'}
}.items () :

columns.append (
{keys: Column (column_types|[values|['data_type'll)}
)
for column in columns:
new_satellite.update (column)

person_patient_details = type |

'"PUBLIC_Sat_Person_Patient_Details', (Base,), new_satellite
)
new_satellite={'__tablename__ ':'sat_object_treatments_details',
' __table_args__ ':{'schema': 'public'},
'id': Column (column_types['integer'], primary_key=True),
'source_table': Column (column_types['string']),
'hub_id': Column (column_types|['integer'], ForeignKey (hub_object.id)) }
columns = []
for keys, values in {
'treatment_name': {'data_type': 'varchar (255)'}
}.items () :
columns.append ({keys: Column (column_types([values['data_type']])})

for column in columns:
new_satellite.update (column)

object_treatments_details = type(
'PUBLIC_Sat_Object_Treatments_Details', (Base,), new_satellite

38

Listing 6: An example of an auto-generated control file

control_files = {}

public_patients_hubs = {

'table': 'public.patients',
'hubs': [
{
'hub': 'hub_person',
'keys': [

'patient_id"',
'hospital_id'

]I

'data_types': {
'patient_id': {'data_type': 'bigint'},
'name': {'data_type': 'varchar (255)"'},
'address': {'data_type': 'varchar (255)'},
'hospital_id': {'data_type': 'bigint'}

}
public_patients_satellites = {

'satellites': [
{
'satellite': 'sat_person_patient_details',
'columns': [
'name', 'address'
]I
'hub': 'hub_person',
'hub_id': O,
'data_types': {
'name': {'data_type': 'varchar (255) "'},
'address': {'data_type': 'varchar (255)"'
}
}I
'source_table': 'public.patients'

}
public_patients_links = {
'links': []

control_files.update ({'public.patients': {
'hubs': public_patients_hubs,
'satellites': public_patients_satellites,
'links': public_patients_links

)

39

	Executive Summary
	List of Abbreviations
	Introduction
	Smart Patient Health Record Format
	Overview of the Smart Patient Health Record Format
	Giving Patients Control Over Their Data
	Data Vaults and How Serums Uses Them
	Tracking Lineage

	Bibliography
	Appendices
	The Seven Principles of GDPR and how Serums Addresses them
	The complete list of tags
	Problems Data Vaults Solve
	Data Vault Design - Vault Bot

